Skip to main content
Log in

DNMT1 Methylation of LncRNA GAS5 Leads to Cardiac Fibroblast Pyroptosis via Affecting NLRP3 Axis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Cell death and inflammation play critical roles in cardiac fibrosis. During the fibrosis process, inflammation and tissue injury were triggered; however, the mechanisms initiating cardiac fibrosis and driving fibroblast pyroptosis remained largely unknown. In this study, we identified long non-coding RNA (LncRNA)-GAS5 as the key onset of cardiac fibroblast pyroptosis and cardiac fibrosis. Here, we detected ISO-induced cardiac fibrosis models and cardiac fibroblast pyroptosis model by stimulating with LPS. We found that the expression of pyroptosis-related proteins such as caspase 1, NLRP3, and DNMT1 was increased in cardiac fibrosis tissue, while the expression of GAS5 was decreased. The overexpressing of LncRNA GAS5 was shown to increase and inhibit cardiac fibroblast pyroptosis, as well as attenuate caspase 1 and NLRP3 expression in cardiac fibroblast. However, the silencing of GAS5 was also observed; it shows the opposite situation. Furthermore, further studies revealed that treatment of DNMT inhibitor, 5-aza-2-deoxycytidine, or downregulation of DNMT1 led to increased GAS5 expression by reversion of promoter hypermethylation in cardiac fibroblast. Importantly, we have demonstrated that DNMT1 methylation of LncRNA GAS5 leads to cardiac fibroblast pyroptosis via affecting NLRP3 axis. Our findings indicate a new regulatory mechanism for cardiac fibroblast pyroptosis under LPS stress, providing a novel therapeutic target for cardiac fibrosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, E.Y., N. Rafatian, Y. Zhao, A. Lee, B.F.L. Lai, R.X. Lu, D. Jekic, L. Davenport Huyer, E.J. Knee-Walden, S. Bhattacharya, P.H. Backx, and M. Radisic. 2019. Biowire model of interstitial and focal cardiac fibrosis. ACS Central Science 5 (7): 1146–1158. https://doi.org/10.1021/acscentsci.9b00052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nagaraju, C.K., E.L. Robinson, M. Abdesselem, S. Trenson, E. Dries, G. Gilbert, S. Janssens, et al. 2019. Myofibroblast phenotype and reversibility of fibrosis in patients with end-stage heart failure. Journal of the American College of Cardiology 73 (18): 2267–2282. https://doi.org/10.1016/j.jacc.2019.02.049.

    Article  PubMed  Google Scholar 

  3. Nakaya, M., K. Watari, M. Tajima, T. Nakaya, S. Matsuda, H. Ohara, H. Nishihara, H. Yamaguchi, A. Hashimoto, M. Nishida, A. Nagasaka, Y. Horii, H. Ono, G. Iribe, R. Inoue, M. Tsuda, K. Inoue, A. Tanaka, M. Kuroda, S. Nagata, H. Kurose, et al. 2017. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. The Journal of Clinical Investigation 127 (1): 383–401. https://doi.org/10.1172/JCI83822.

    Article  PubMed  Google Scholar 

  4. Del Re, D.P., D. Amgalan, A. Linkermann, Q. Liu, and R.N. Kitsis. 2019. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiological Reviews 99 (4): 1765–1817. https://doi.org/10.1152/physrev.00022.2018.

    Article  CAS  PubMed  Google Scholar 

  5. Caceres, F. T., T. A. Gaspari, C. S. Samuel, and A. A. Pinar. 2019. Serelaxin inhibits the profibrotic TGF-beta1/IL-1beta axis by targeting TLR-4 and the NLRP3 inflammasome in cardiac myofibroblasts. FASEB J:fj201901079RR. doi:https://doi.org/10.1096/fj.201901079RR.

  6. Tschope, C., I. Muller, Y. Xia, K. Savvatis, K. Pappritz, S. Pinkert, D. Lassner, et al. 2017. NOD2 (nucleotide-binding Oligomerization domain 2) is a major pathogenic mediator of Coxsackievirus B3-induced myocarditis. Circulation. Heart Failure 10 (9). https://doi.org/10.1161/CIRCHEARTFAILURE.117.003870.

  7. Zhang, P., L. Cao, R. Zhou, X. Yang, and M. Wu. 2019. The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nature Communications 10 (1): 1495. https://doi.org/10.1038/s41467-019-09482-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu, C., Y. Zhang, Q. Wang, Z. Xu, J. Jiang, Y. Gao, M. Gao, J. Kang, M. Wu, J. Xiong, K. Ji, W. Yuan, Y. Wang, and H. Liu. 2016. Long non-coding RNA GAS5 controls human embryonic stem cell self-renewal by maintaining NODAL signalling. Nature Communications 7: 13287. https://doi.org/10.1038/ncomms13287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu, N., X. Zhang, Y. Bao, H. Yu, D. Jia, and C. Ma. 2019. Down-regulation of GAS5 ameliorates myocardial ischaemia/reperfusion injury via the miR-335/ROCK1/AKT/GSK-3beta axis. Journal of Cellular and Molecular Medicine 23 (12): 8420–8431. https://doi.org/10.1111/jcmm.14724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. You, B.H., J.H. Yoon, H. Kang, E.K. Lee, S.K. Lee, and J.W. Nam. 2019. HERES, a lncRNA that regulates canonical and noncanonical Wnt signaling pathways via interaction with EZH2. Proceedings of the National Academy of Sciences of the United States of America 116 (49): 24620–24629. https://doi.org/10.1073/pnas.1912126116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhi, H., X. Li, P. Wang, Y. Gao, B. Gao, D. Zhou, Y. Zhang, M. Guo, M. Yue, W. Shen, S. Ning, L. Jin, and X. Li. 2018. Lnc2Meth: a manually curated database of regulatory relationships between long non-coding RNAs and DNA methylation associated with human disease. Nucleic Acids Research 46 (D1): D133–D138. https://doi.org/10.1093/nar/gkx985.

    Article  CAS  PubMed  Google Scholar 

  12. Ying, Y., Y. Mao, and M. Yao. 2019. NLRP3 Inflammasome activation by microRNA-495 promoter methylation may contribute to the progression of acute lung injury. Molecular Therapy-Nucleic Acids 18: 801–814. https://doi.org/10.1016/j.omtn.2019.08.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weinberg, D.N., S. Papillon-Cavanagh, H. Chen, Y. Yue, X. Chen, K.N. Rajagopalan, C. Horth, J. McGuire, X. Xu, H. Nikbakht, A.E. Lemiesz, D.M. Marchione, M.R. Marunde, M.J. Meiners, M.A. Cheek, M.C. Keogh, E. Bareke, A. Djedid, A.S. Harutyunyan, N. Jabado, B.A. Garcia, H. Li, C.D. Allis, J. Majewski, and C. Lu. 2019. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573 (7773): 281–286. https://doi.org/10.1038/s41586-019-1534-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, Y., Z. Zhang, J. Chen, W. Liu, W. Lai, B. Liu, X. Li, L. Liu, S. Xu, Q. Dong, M. Wang, X. Duan, J. Tan, Y. Zheng, P. Zhang, G. Fan, J. Wong, G.L. Xu, Z. Wang, H. Wang, S. Gao, B. Zhuet al. . 2018. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature 564 (7734):136–140. doi:https://doi.org/10.1038/s41586-018-0751-5.

  15. Yang, J.J., Q. She, Y. Yang, H. Tao, and J. Li. 2018. DNMT1 controls LncRNA H19/ERK signal pathway in hepatic stellate cell activation and fibrosis. Toxicology Letters 295: 325–334. https://doi.org/10.1016/j.toxlet.2018.07.013.

    Article  CAS  PubMed  Google Scholar 

  16. Shih, Y.C., C.L. Chen, Y. Zhang, R.L. Mellor, E.M. Kanter, Y. Fang, H.C. Wang, C.T. Hung, J.Y. Nong, H.J. Chen, T.H. Lee, Y.S. Tseng, C.N. Chen, C.C. Wu, S.L. Lin, K.A. Yamada, J.M. Nerbonne, K.C. Yang, et al. 2018. Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circulation Research 122 (8): 1052–1068. https://doi.org/10.1161/CIRCRESAHA.117.312130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar, A., S. K. Thomas, K. C. Wong, V. Lo Sardo, D. S. Cheah, Y. H. Hou, J. K. Placone, K.P. Tenerelli, W.C. Ferguson, A. Torkamani, E.J. Topol, K.K. Baldwin, A.J. Engleret al. . 2019. Mechanical activation of noncoding-RNA-mediated regulation of disease-associated phenotypes in human cardiomyocytes. Nature Biomedical Engineering 3 (2):137–146. doi:https://doi.org/10.1038/s41551-018-0344-5.

  18. Mayer, S. C., R. Gilsbach, S. Preissl, E. B. Monroy Ordonez, T. Schnick, N. Beetz, A. Lother, C. Rommel, H. Ihle, H. Bugger, F. Rühle, A. Schrepper, M. Schwarzer, C. Heilmann, U. Bönisch, S.K. Gupta, J. Wilpert, O. Kretz, D. von Elverfeldt, J. Orth, K. Aktories, F. Beyersdorf, C. Bode, B. Stiller, M. Krüger, T. Thum, T. Doenst, M. Stoll, L. Heinet al. . 2015. Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure. Circulation Research 117 (7):622–633. doi:https://doi.org/10.1161/CIRCRESAHA.115.306721.

  19. Micheletti, R., I. Plaisance, B.J. Abraham, A. Sarre, C.C. Ting, M. Alexanian, D. Maric, D. Maison, M. Nemir, R.A. Young, B. Schroen, A. González, S. Ounzain, T. Pedrazzini, et al. 2017. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Science Translational Medicine 9 (395). https://doi.org/10.1126/scitranslmed.aai9118.

  20. Tao, H., J.G. Zhang, R.H. Qin, C. Dai, P. Shi, J.J. Yang, Z.Y. Deng, and K.H. Shi. 2017. LncRNA GAS5 controls cardiac fibroblast activation and fibrosis by targeting miR-21 via PTEN/MMP-2 signaling pathway. Toxicology 386: 11–18. https://doi.org/10.1016/j.tox.2017.05.007.

    Article  CAS  PubMed  Google Scholar 

  21. Lucafo, M., L. Pugnetti, M. Bramuzzo, D. Curci, A. Di Silvestre, A. Marcuzzi, A. Bergamo, et al. 2019. Long non-coding RNA GAS5 and intestinal MMP2 and MMP9 expression: a translational study in pediatric patients with IBD. International Journal of Molecular Sciences 20 (21): 5280. https://doi.org/10.3390/ijms20215280.

    Article  CAS  PubMed Central  Google Scholar 

  22. Lee, C.C., S.H. Peng, L. Shen, C.F. Lee, T.H. Du, M.L. Kang, G.L. Xu, et al. 2017. The role of N-alpha-acetyltransferase 10 protein in DNA methylation and genomic imprinting. Molecular Cell 68 (1): 89–103 e107. https://doi.org/10.1016/j.molcel.2017.08.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chung, I.C., L.C. Chen, N.M. Tsang, W.Y. Chuang, T.C. Liao, S.N. Yuan, C.N. OuYang, D.M. Ojcius, C.C. Wu, and Y.S. Chang. 2019. Mitochondrial oxidative phosphorylation complex regulates NLRP3 inflammasome activation and predicts patient survival in nasopharyngeal carcinoma. Molecular & Cellular Proteomics 19 (1): 142–154. https://doi.org/10.1074/mcp.RA119.001808.

    Article  Google Scholar 

  24. Jimenez Calvente, C., H. Del Pilar, M. Tameda, C.D. Johnson, and A.E. Feldstein. 2019. MicroRNA 223 3p negatively regulates the NLRP3 inflammasome in acute and chronic liver injury. Molecular Therapy. https://doi.org/10.1016/j.ymthe.2019.09.013.

Download references

Funding

This project was supported by the National Natural Science Foundation of China (81700212, 81570295), Natural Science Foundation of Anhui Provincial (1808085MH231), Natural Science Foundation of Jiangsu Provincial (BK20191503), and Science Foundation of Anhui Provincial Institute of Cardiovascular Research (KF2018011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Tao, Kai-Hu Shi or Yan Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, Q., Shi, P., Xu, SS. et al. DNMT1 Methylation of LncRNA GAS5 Leads to Cardiac Fibroblast Pyroptosis via Affecting NLRP3 Axis. Inflammation 43, 1065–1076 (2020). https://doi.org/10.1007/s10753-020-01191-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01191-3

KEY WORDS

Navigation