Skip to main content

Advertisement

Log in

MiR-217 Inhibits M2-Like Macrophage Polarization by Suppressing Secretion of Interleukin-6 in Ovarian Cancer

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Ovarian cancer is one of the most deadly cancers with rapid proliferation and poor prognosis among patients. Therapies focusing on regulation of tumor immunity and microenvironments are developing. MiR-217 was dysregulated in cancer progress and plays important roles in tumorigenesis and metastasis. However, the role of miR-217 in regulation of macrophage polarization and its underlying molecular mechanism remain unclear. The expression of miR-217 in ovarian cancerous tissues and cell lines were assessed by qRT-PCR. And we detected the staining of CD86 and CD206 via flow-cytometry and the levels of Arg-1 and CCR2 by western-blot in order to evaluate M2 macrophage polarization. The targeting regulation of miR-217 on pro-inflammatory factor IL-6 was assessed by dual-luciferase reporter assay and western-blot. ELISA assay was used to evaluate the secretion of IL-6 and IL-10 of cells. MiR-217 was found to be downregulated in ovarian cancerous tissues and cell lines. This downregulation correlated with an increased expression of the IL-6, Arg-1, CCR2, and CD206 gene. The overexpression of miR-217 in SKOV3 cells can inhibit the polarization of macrophages towards an M2-like phenotype. We also found that IL-6 was validated to induce M2 macrophage polarization and its secretion in SKOV-3 cells was inhibited by miR-217 directly. Moreover, we revealed that miR-217 suppressed M2 macrophage polarization partly thought JAK/STAT3 signal pathway. Taken together, these findings indicate that miR-217 inhibits tumor-induced M2 macrophage polarization through targeting of IL-6 and regulation JAK3/STAT3 signaling pathway, which may provide a potential therapeutic target for treating ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal, A., R. Siegel, E. Ward, Y. Hao, J. Xu, and M.J. Thun. 2009. Cancer statistics, 2009. CA: a Cancer Journal for Clinicians 59 (4): 225–249.

    Google Scholar 

  2. Lengyel, E. 2010. Ovarian cancer development and metastasis. The American Journal of Pathology 177 (3): 1053–1064.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu, Bei, J. Nash, Carolyn Runowicz, Helen Swede, Richard Stevens, and Zihai Li. 2010. Ovarian cancer immunotherapy: opportunities, progresses and challenges. Journal of Hematology& Oncology 3: 7.

    Article  CAS  Google Scholar 

  4. Ehlen, T.G., et al. 2005. A pilot phase 2 study of oregovomab murine monoclonal antibody to CA125 as an immunotherapeutic agent for recurrent ovarian cancer. International Journal of Gynecological Cancer 15 (6): 1023–1034.

    Article  CAS  PubMed  Google Scholar 

  5. Edwards, R.P., W. Gooding, B.C. Lembersky, K. Colonello, R. Hammond, C. Paradise, C.D. Kowal, A.J. Kunschner, M. Baldisseri, J.M. Kirkwood, and R.B. Herberman. 1997. Comparison of toxicity and survival following intraperitoneal recombinant interleukin-2 for persistent ovarian cancer after platinum: twenty-four-hour versus 7-day infusion. Journal of Clinical Oncology 15 (11): 3399–3407.

    Article  CAS  PubMed  Google Scholar 

  6. Berd, D. 2001. Autologous, hapten-modified vaccine as a treatment for human cancers. Vaccine 19 (17): 2565–2570.

    Article  CAS  PubMed  Google Scholar 

  7. Hernando, J., et al. 2002. Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunology, Immunotherapy 51 (1): 45–52.

    Article  CAS  PubMed  Google Scholar 

  8. Disis, M.L., V. Goodell, K. Schiffman, and K.L. Knutson. 2004. Humoral epitope-spreading following immunization with a HER-2/neu peptide based vaccine in cancer patients. Journal of Clinical Immunology 24 (5): 571–578.

    Article  CAS  PubMed  Google Scholar 

  9. Spill, F., D.S. Reynolds, R.D. Kamm, and M.H. Zaman. 2016. Impact of the physical microenvironment on tumor progression and metastasis. Current Opinion in Biotechnology 40: 41–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Santoiemma, P.P., and D.J. Powell. 2015. Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biology & Therapy 16 (6): 807–820.

    Article  CAS  Google Scholar 

  11. Eggermont, A., C. Robert, J.C. Soria, and L. Zitvogel. 2014. Harnessing the immune system to provide long-term survival in patients with melanoma and other solid tumors. OncoImmunology 3 (1): e27560.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mantovani, A., et al. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology 23 (11): 549–555.

    Article  CAS  PubMed  Google Scholar 

  13. Freedman, R.S., et al. 2000. Clinical and biological effects of intraperitoneal injections of recombinant interferon-γ and recombinant interleukin 2 with or without tumor-infiltrating lymphocytes in patients with ovarian or peritoneal carcinoma. Clinical Cancer Research 6 (6): 2268.

    CAS  PubMed  Google Scholar 

  14. Freedman, R.S., M. Deavers, J. Liu, and E. Wang. 2004. Peritoneal inflammation - a microenvironment for epithelial ovarian cancer (EOC). Journal of Translational Medicine 2 (1): 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kipps, E., D.S.P. Tan, and S.B. Kaye. 2013. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nature Reviews Cancer 13: 273–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pogge von Strandmann, E., et al. 2017. Host cell interactions in ovarian cancer: pathways to therapy failure. Trends in Cancer 3 (2): 137–148.

    Article  CAS  PubMed  Google Scholar 

  17. Huang, S., et al. 2002. Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. Journal of the National Cancer Institute 94: 1134–1142.

    Article  CAS  PubMed  Google Scholar 

  18. Ke, X., et al. 2016. Tumor-associated macrophages promote invasion via Toll-like receptors signaling in patients with ovarian cancer. International Immunopharmacology 40 (Supplement C): 184–195.

    Article  CAS  PubMed  Google Scholar 

  19. Duluc, D., Y. Delneste, F. Tan, M.P. Moles, L. Grimaud, J. Lenoir, L. Preisser, I. Anegon, L. Catala, N. Ifrah, P. Descamps, E. Gamelin, H. Gascan, M. Hebbar, and P. Jeannin. 2007. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110 (13): 4319–4330.

    Article  CAS  PubMed  Google Scholar 

  20. He, L., and G.J. Hannon. 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews. Genetics 5: 522–531.

    Article  CAS  PubMed  Google Scholar 

  21. Tong, A.W., and J. Nemunaitis. 2008. Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Therapy 15: 341–355.

    Article  CAS  PubMed  Google Scholar 

  22. He, D., J. Wang, C. Zhang, B. Shan, X. Deng, B. Li, Y. Zhou, W. Chen, J. Hong, Y. Gao, Z. Chen, and C. Duan. 2015. Down-regulation of miR-675-5p contributes to tumor progression and development by targeting pro-tumorigenic GPR55 in non-small cell lung cancer. Molecular Cancer 14: 73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, C.-Z. 2005. MicroRNAs as oncogenes and tumor suppressors. New England Journal of Medicine 353 (17): 1768–1771.

    Article  CAS  PubMed  Google Scholar 

  24. Su, J., Q. Wang, Y. Liu, and M. Zhong. 2014. miR-217 inhibits invasion of hepatocellular carcinoma cells through direct suppression of E2F3. Molecular and Cellular Biochemistry 392 (1–2): 289–296.

    Article  CAS  PubMed  Google Scholar 

  25. Li, J., D. Li, and W. Zhang. 2016. Tumor suppressor role of miR-217 in human epithelial ovarian cancer by targeting IGF1R. Oncology Reports 35 (3): 1671–1679.

    Article  CAS  PubMed  Google Scholar 

  26. Mezzanzanica, D. 2015. Ovarian cancer: a molecularly insidious disease. Chinese Journal of Cancer 34 (1): 1–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, C., W. Sun, P. Zhang, S. Ling, Y. Li, D. Zhao, J. Peng, A. Wang, Q. Li, J. Song, C. Wang, X. Xu, Z. Xu, G. Zhong, B. Han, Y.Z. Chang, and Y. Li. 2015. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biology 12 (3): 343–353.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yin, H., X. Liang, A. Jogasuria, N.O. Davidson, and M. You. 2015. miR-217 regulates ethanol-induced hepatic inflammation by disrupting sirtuin 1-lipin-1 signaling. The American Journal of Pathology 185 (5): 1286–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, B., Z.L. Shen, K.W. Jiang, G. Zhao, C.Y. Wang, Y.C. Yan, Y. Yang, J.Z. Zhang, C. Shen, Z.D. Gao, Y.J. Ye, and S. Wang. 2015. MicroRNA-217 functions as a prognosis predictor and inhibits colorectal cancer cell proliferation and invasion via an AEG-1 dependent mechanism. BMC Cancer 15 (1): 437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, W.-G., S.N. Yu, Z.H. Lu, Y.H. Ma, Y.M. Gu, and J. Chen. 2010. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31 (10): 1726–1733.

    Article  CAS  PubMed  Google Scholar 

  31. Bai, M., et al. 2017. MiR-217 promotes cutaneous squamous cell carcinoma progression by targeting PTRF. American Journal of Translational Research 9 (2): 647–655.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, Q., Y. Yuan, J. Cui, T. Xiao, and D. Jiang. 2015. MiR-217 promotes tumor proliferation in breast cancer via targeting DACH1. Journal of Cancer 6 (2): 184–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, Y., H. Liu, H. Zhang, Q. Ye, J. Wang, B. Yang, L. Mao, W. Zhu, R.K. Leak, B. Xiao, B. Lu, J. Chen, and X. Hu. 2017. ST2/IL-33-dependent microglial response limits acute ischemic brain injury. The Journal of Neuroscience 37 (18): 4692–4704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, Y., W. Sime, M. Juhas, and A. Sjölander. 2013. Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration. European Journal of Cancer 49 (15): 3320–3334.

    Article  CAS  PubMed  Google Scholar 

  35. Genin, M., F. Clement, A. Fattaccioli, M. Raes, and C. Michiels. 2015. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15: 577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rahal, O.M., A.R. Wolfe, P.K. Mandal, R. Larson, S. Tin, C. Jimenez, D. Zhang, J. Horton, J.M. Reuben, J.S. McMurray, and W.A. Woodward. 2018. Blocking interleukin (IL)4- and IL13-mediated phosphorylation of STAT6 (Tyr641) decreases M2 polarization of macrophages and protects against macrophage-mediated radioresistance of inflammatory breast cancer. International Journal of Radiation Oncology, Biology, Physics 100 (4): 1034–1043.

    Article  CAS  PubMed  Google Scholar 

  37. Tedesco, S., et al. 2018. Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Frontiers in Pharmacology 9: 71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, J., C. Wang, and H. Xu. 2017. miR-217 suppresses proliferation and promotes apoptosis in cardiac myxoma by targeting Interleukin-6. Biochemical and Biophysical Research Communications 490 (3): 713–718.

    Article  CAS  PubMed  Google Scholar 

  39. Jeannin, P., D. Duluc, and Y. Delneste. 2011. IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-gamma. Immunotherapy 3 (4 Suppl): 23–26.

    Article  CAS  PubMed  Google Scholar 

  40. Braune, J., U. Weyer, C. Hobusch, J. Mauer, J.C. Brüning, I. Bechmann, and M. Gericke. 2017. IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. The Journal of Immunology 198 (7): 2927–2934.

    Article  CAS  PubMed  Google Scholar 

  41. Mori, T., T. Miyamoto, H. Yoshida, M. Asakawa, M. Kawasumi, T. Kobayashi, H. Morioka, K. Chiba, Y. Toyama, and A. Yoshimura. 2011. IL-1β and TNFα-initiated IL-6–STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. International Immunology 23 (11): 701–712.

    Article  CAS  PubMed  Google Scholar 

  42. Fu, X.L., W. Duan, C.Y. Su, F.Y. Mao, Y.P. Lv, Y.S. Teng, P.W. Yu, Y. Zhuang, and Y.L. Zhao. 2017. Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunology, Immunotherapy 66 (12): 1597–1608.

    Article  CAS  PubMed  Google Scholar 

  43. Fernando, M.R., J.L. Reyes, J. Iannuzzi, G. Leung, and D.M. McKay. 2014. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS One 9 (4): e94188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, Q., X. Zhou, D. Huang, Y. JI, and F. Kang. 2017. IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cellular Physiology and Biochemistry 41 (4): 1360–1369.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xue.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Zhu, SJ., Xiao, SS. et al. MiR-217 Inhibits M2-Like Macrophage Polarization by Suppressing Secretion of Interleukin-6 in Ovarian Cancer. Inflammation 42, 1517–1529 (2019). https://doi.org/10.1007/s10753-019-01004-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01004-2

KEY WORDS

Navigation