Skip to main content

Advertisement

Log in

Combination Therapy with Curcumin Alone Plus Piperine Ameliorates Ovalbumin-Induced Chronic Asthma in Mice

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Allergic asthma is an inflammatory condition accompanied by inflammation as well as oxidative stress. Supplementation of an anti-inflammatory agent having antioxidant properties may have therapeutic effects against this disease. Over the recent decades, the interest in combination therapy as new alternative medication has increased and it offers numerous benefits along with noticeable lack of toxicity as well as side effects. In this study, protective effects of curcumin alone and in combination with piperine were evaluated in mouse model of allergic asthma. Balb/c mice were sensitized on days 0, 7, and 14 and challenged from days 16–30 on alternate days with ovalbumin (OVA). Mice were pretreated with curcumin (Cur; 10 and 20 mg/kg) and piperine (Pip; 5 mg/kg) alone and in combination via the intraperitoneal route on days 16–30 and compared with intranasal curcumin (5 mg/kg) treatment. Blood, bronchoalveolar lavage fluid (BALF), and lungs were collected after mice were sacrificed on day 31st. Mice immunized with OVA have shown significant increase in airway inflammation and oxidative stress as determined by oxidative stress markers. A significant suppression was observed with all the treatments, but intranasal curcumin treatment group has shown maximum suppression. So, among all the treatment strategies utilized, intranasal curcumin administration was most appropriate in reducing inflammation and oxidative stress and possesses therapeutic potential against allergic asthma. Present study may prove the possibility of development of curcumin nasal drops towards treatment of allergic asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Braman, S.S. 2006. The global burden of asthma. Chest 130: 4–12.

    Article  Google Scholar 

  2. Dworski, R. 2000. Oxidant stress in asthma. Thorax 55: 51–53.

    Article  Google Scholar 

  3. Calhoun, W.J., H.E. Reed, D.R. Moest, and C.A. Stevens. 1992. Enhanced superoxide production by alveolar macrophages and air-space cells, airway inflammation, and alveolar macrophage density changes after segmental antigen bronchoprovocation in allergic subjects. The American Review of Respiratory Research 145: 317–325.

    CAS  Google Scholar 

  4. Sedgwick, J.B., K.M. Geiger, and W.W. Busse. 1990. Superoxide generation by hypodense eosinophils from patients with asthma. American Review of Respiratory Disease 142: 120–125.

    Article  PubMed  CAS  Google Scholar 

  5. Vachier, I., M. Damon, C. Le Doucen, A.C. De Paulet, P. Chanez, F.B. Michel, and P. Godard. 1992. Increased oxygen species generation in blood monocytes of asthmatic patients. American Review of Respiratory Disease 146: 1161–1168.

    Article  PubMed  CAS  Google Scholar 

  6. Hulsmann, A.R., H.R. Raatgeep, J.C. Den Hollander, T.H.E.O. Stijnen, P.R. Saxena, K.F. Kerrebijn, and J.C. de Jongste. 1994. Oxidative epithelial damage produces hyperresponsiveness of human peripheral airways. American Journal of Respiratory and Critical Care Medicine 149: 519–525.

    Article  PubMed  CAS  Google Scholar 

  7. Franco, R., A.C. Santos, H.F. do Nascimento, C. Souza-Machado, E. Ponte, A. Souza-Machado, S. Loureiro, M.L. Barreto, L.C. Rodrigues, and A.A. Cruz. 2007. Cost-effectiveness analysis of a state funded programme for control of severe asthma. Bio Med Central Public Health 7: 82.

    Article  Google Scholar 

  8. Kumar, D., V. Arya, R. Kaur, Z.A. Bhat, V.K. Gupta, and V. Kumar. 2012. A review of immunomodulators in the Indian traditional health care system. Journal of Microbiology, Immunology and Infection 45: 165–184.

    Article  CAS  Google Scholar 

  9. Manson, M. M., P. B. Farmer, A. Gescher, and W. P. Steward. 2005. Innovative agents in cancer prevention. In Tumor Prevention and Genetics III. Springer, Berlin, Heidelberg 257–275.

  10. World Health Organization. 2008. Traditional Medicine Fact Sheet No. 134.

  11. Aggarwal, B. B., Y. J. Surh, and S. Shishodia. 2007.Curcumin: The indian solid gold. The molecular targets and therapeutic uses of curcumin in health and disease. Springer Science & Business Media 595

  12. Sandur, S.K., H. Ichikawa, M.K. Pandey, A.B. Kunnumakkara, B. Sung, G. Sethi, and B.B. Aggarwal. 2007. Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radical Biology and Medicine 43: 568–580.

    Article  PubMed  CAS  Google Scholar 

  13. Reyes-Gordillo, K., J. Segovia, M. Shibayama, P. Vergara, M.G. Moreno, and P. Muriel. 2007. Curcumin protects against acute liver damage in the rat by inhibiting NF-κB, proinflammatory cytokines production and oxidative stress. Biochimica et Biophysica Acta (BBA)-General Subjects 1770: 989–996.

    Article  CAS  Google Scholar 

  14. Xia, Y., L. Jin, B. Zhang, H. Xue, Q. Li, and Y. Xu. 2007. The potentiation of curcumin on insulin-like growth factor-1 action in MCF-7 human breast carcinoma cells. Life Sciences 80: 2161–2169.

    Article  PubMed  CAS  Google Scholar 

  15. Polasa, K., A.N. Naidu, I. Ravindranath, and K. Krishnaswamy. 2004. Inhibition of B (a) P induced strand breaks in presence of curcumin. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 557: 203–213.

    Article  CAS  Google Scholar 

  16. Ammon, H.P., and M.A. Wahl. 1991. Pharmacology of Curcuma longa. Planta Medica 57: 1–7.

    Article  PubMed  CAS  Google Scholar 

  17. Lee, S.A., S.S. Hong, X.H. Han, J.S. Hwang, G.J. Oh, K.S. Lee, M.K. Lee, B.Y. Hwang, and J.S. Ro. 2005. Piperine from the fruits of piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chemical and Pharmaceutical Bulletin 53: 832–835.

    Article  PubMed  CAS  Google Scholar 

  18. Pradeep, C.R., and G. Kuttan. 2002. Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice. Clinical & Experimental Metastasis 19: 703–708.

    Article  CAS  Google Scholar 

  19. Panda, S., and A. Kar. 2003. Piperine lowers the serum concentrations of thyroid hormones, glucose and hepatic 5′ D activity in adult male mice. Hormone and Metabolic Research 35: 523–526.

    Article  PubMed  CAS  Google Scholar 

  20. Koul, I.B., and A. Kapil. 1993. Evaluation of the liver protective potential of piperine, an active principle of black and long peppers. Planta Medica 59: 413–417.

    Article  PubMed  CAS  Google Scholar 

  21. Atal, C.K., R.K. Dubey, and J. Singh. 1985. Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. Journal of Pharmacology and Experimental Therapeutics 232: 258–262.

    PubMed  CAS  Google Scholar 

  22. Reen, R.K., D.S. Jamwal, S.C. Taneja, J.L. Koul, R.K. Dubey, F.J. Wiebel, and J. Singh. 1993. Impairment of UDP-glucose dehydrogenase and glucuronidation activities in liver and small intestine of rat and guinea pig in vitro by piperine. Biochemical Pharmacology 46: 229–238.

    Article  PubMed  CAS  Google Scholar 

  23. Shoba, G., D. Joy, T. Joseph, M. Majeed, R. Rajendran, and P.S.S.R. Srinivas. 1998. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Medica 64: 353–356.

    Article  PubMed  CAS  Google Scholar 

  24. Subhashini, P., S. Chauhan, S. Kumari, J.P. Kumar, R. Chawla, D. Dash, M. Singh, and R. Singh. 2013. Intranasal curcumin and its evaluation in murine model of asthma. International Immunopharmacology 17: 733–743.

    Article  PubMed  CAS  Google Scholar 

  25. Chauhan, P.S., D. Dash, and R. Singh. 2014. Intranasal curcumin attenuates airway remodeling in murine model of chronic asthma. International Immunopharmacology 21: 63–75.

    Article  PubMed  CAS  Google Scholar 

  26. Kumari, A., D. Dash, and R. Singh. 2015. Lipopolysaccharide (LPS) exposure differently affects allergic asthma exacerbations and its amelioration by intranasal curcumin in mice. Cytokine 76: 334–342.

    Article  PubMed  CAS  Google Scholar 

  27. Karaman, M., F. Firinci, S. Cilaker, P. Uysal, K. Tugyan, O. Yilmaz, N. Uzuner, and O. Karaman. 2012. Anti-inflammatory effects of curcumin in a murine model of chronic asthma. Allergologia et Immunopathologia 40: 210–214.

    Article  PubMed  CAS  Google Scholar 

  28. Bishnoi, M., K. Chopra, L. Rongzhu, and S.K. Kulkarni. 2011. Protective effect of curcumin and its combination with piperine (bioavailability enhancer) against haloperidol-associated neurotoxicity: cellular and neurochemical evidence. Neurotoxicity Research 20: 215–225.

    Article  PubMed  CAS  Google Scholar 

  29. Kim, S.H., and Y.C. Lee. 2009. Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model. Journal of Pharmacy and Pharmacology 61: 353–359.

    Article  PubMed  CAS  Google Scholar 

  30. Ram, A., M. Das, and B. Ghosh. 2003. Curcumin attenuates allergen-induced airway hyperresponsiveness in sensitized guinea pigs. Biological and Pharmaceutical Bulletin 26: 1021–1024.

    Article  PubMed  CAS  Google Scholar 

  31. Sahiner, U.M., E. Birben, S. Erzurum, C. Sackesen, and O. Kalayci. 2011. Oxidative stress in asthma. World Allergy Organization Journal 4: 151–158.

    Article  PubMed  CAS  Google Scholar 

  32. Kirkham, P., and I. Rahman. 2006. Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. Pharmacology & Therapeutics 111: 476–494.

    Article  CAS  Google Scholar 

  33. Parra, A., M.L. Sanz, L. Vila, I. Prieto, I. Dieguez, and A.K. Oehling. 1999. Eosinophil soluble protein levels, eosinophil peroxidase and eosinophil cationic protein in asthmatic patients. Journal of Investigational Allergology & Clinical Immunology 9: 27.

    CAS  Google Scholar 

  34. Platts-Mills, T.A. 2001. The role of immunoglobulin E in allergy and asthma. American Journal of Respiratory and Critical Care Medicine 164: 1–5.

    Article  Google Scholar 

  35. Cho, Y.S., and H.B. Moon. 2010. The role of oxidative stress in the pathogenesis of asthma. Allergy, Asthma & Immunology Research 2: 183–187.

    Article  CAS  Google Scholar 

  36. Wood, L.G., P.G. Gibson, and M.L. Garg. 2003. Biomarkers of lipid peroxidation, airway inflammation and asthma. European Respiratory Journal 21: 177–186.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Dash for providing spectrofluorometer facility to analyze reactive oxygen species (ROS) by using DCF-DA fluorescence at the Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi. We are also thankful to University Grants Commission (UGC), DST-Science and Engineering Research Board (DST-SERB), and Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Singh.

Ethics declarations

The study design was approved by the Institutional Animal Ethical Committee, Banaras Hindu University, Varanasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, P.S., Jaiswal, A., Subhashini et al. Combination Therapy with Curcumin Alone Plus Piperine Ameliorates Ovalbumin-Induced Chronic Asthma in Mice. Inflammation 41, 1922–1933 (2018). https://doi.org/10.1007/s10753-018-0836-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0836-1

KEY WORDS

Navigation