Skip to main content
Log in

Large-Volume Crystalloid Fluid Is Associated with Increased Hyaluronan Shedding and Inflammation in a Canine Hemorrhagic Shock Model

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Shedding of the endothelial glycocalyx precedes leukocyte activation and adherence in acute inflammation. Rapid administration of crystalloid or colloid fluids for treating hemorrhagic shock may cause endothelial glycocalyx shedding, thereby increasing inflammation. This study aimed to compare the effect of different fluid treatments in a canine shock model on glycocalyx biomarker, hyaluronan, and inflammatory biomarkers. Greyhound dogs under general anesthesia subject to hemorrhage for 60 min were given 20 mL kg−1 of either fresh whole blood (FWB), hydroxyethyl starch (HES) 130/0.4, 4% succinylated gelatin (GELO), or 80 mL kg−1 of isotonic crystalloid (CRYST) over 20 min (n = 6 per group). Plasma biomarkers hyaluronan, interleukin (IL) 6, 8, 10, tumor necrosis factor-α, monocyte chemoattractant protein-1, keratinocyte chemokine-like, and atrial natriuretic peptide were measured at baseline, end of hemorrhage (Shock), end of fluid administration (T20), and then 40 (T60), 100 (T120), and 160 (T180) minutes later. Biomarker concentrations were compared between groups using the Kruskal-Wallis test or Fisher’s exact test (measurable versus unmeasurable) (significance set at P < 0.05). Hyaluronan concentration peaked early in the CRYST group at T20, compared to HES (P = 0.005) and GELO (P = 0.018), and later in the GELO group at T60, compared to FWB (P < 0.001). The CRYST group had significantly more samples with measurable IL6 at T180 (P = 0.015), compared to GELO, and IL10 at T60, T120, and T180 (all P = 0.015), compared to FWB. There were no significant differences in other biomarker concentrations. In conclusion, rapid large-volume crystalloid administered for hemorrhagic shock was associated with increased hyaluronan and a greater inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McDonald, K.K., S. Cooper, L. Danielzak, and R.L. Leask. 2016. Glycocalyx degradation induces a proinflammatory phenotype and increased leukocyte adhesion in cultured endothelial cells under flow. PLoS One 11 (12): e0167576. https://doi.org/10.1371/journal.pone.0167576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Scheibner, K.A., M.A. Lutz, S. Boodoo, M.J. Fenton, J.D. Powell, and M.R. Horton. 2006. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. Journal of Immunology 177 (2): 1272–1281.

    Article  CAS  Google Scholar 

  3. McKee, C.M., M.B. Penno, M. Cowman, M.D. Burdick, R.M. Strieter, C. Bao, and P.W. Noble. 1996. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. The Journal of Clinical Investigation 98 (10): 2403–2413. https://doi.org/10.1172/jci119054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lenart, M., M. Rutkowska-Zapala, M. Baj-Krzyworzeka, R. Szatanek, K. Weglarczyk, T. Smallie, L. Ziegler-Heitbrock, M. Zembala, and M. Siedlar. 2017. Hyaluronan carried by tumor-derived microvesicles induces IL-10 production in classical (CD14++CD16-) monocytes via PI3K/Akt/mTOR-dependent signalling pathway. Immunobiology 222 (1): 1–10. https://doi.org/10.1016/j.imbio.2015.06.019.

    Article  PubMed  CAS  Google Scholar 

  5. Berg, S., M. Golster, and B. Lisander. 2002. Albumin extravasation and tissue washout of hyaluronan after plasma volume expansion with crystalloid or hypooncotic colloid solutions. Acta Anaesthesiologica Scandinavica 46 (2): 166–172.

    Article  PubMed  CAS  Google Scholar 

  6. Torres, L.N., J.L. Sondeen, L. Ji, M.A. Dubick, and I. Torres Filho. 2013. Evaluation of resuscitation fluids on endothelial glycocalyx, venular blood flow, and coagulation function after hemorrhagic shock in rats. Journal of Trauma and Acute Care Surgery 75 (5): 759–766. https://doi.org/10.1097/TA.0b013e3182a92514.

    Article  PubMed  CAS  Google Scholar 

  7. Peng, Z., S. Pati, D. Potter, R. Brown, J.B. Holcomb, R. Grill, K. Wataha, P.W. Park, H. Xue, and R.A. Kozar. 2013. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1. Shock 40 (3): 195–202. https://doi.org/10.1097/SHK.0b013e31829f91fc.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pries, A.R., T.W. Secomb, M. Sperandio, and P. Gaehtgens. 1998. Blood flow resistance during hemodilution: Effect of plasma composition. Cardiovascular Research 37 (1): 225–235.

    Article  PubMed  CAS  Google Scholar 

  9. Jacob, M., T. Saller, D. Chappell, M. Rehm, U. Welsch, and B.F. Becker. 2013. Physiological levels of A-, B- and C-type natriuretic peptide shed the endothelial glycocalyx and enhance vascular permeability. Basic Research in Cardiology 108 (3): 347. https://doi.org/10.1007/s00395-013-0347-z.

    Article  PubMed  CAS  Google Scholar 

  10. Chappell, D., D. Bruegger, J. Potzel, M. Jacob, F. Brettner, M. Vogeser, P. Conzen, B.F. Becker, and M. Rehm. 2014. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Critical Care 18 (5): 538. https://doi.org/10.1186/s13054-014-0538-5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alam, H.B., K. Stanton, E. Koustova, D. Burris, N. Rich, and P. Rhee. 2004. Effect of different resuscitation strategies on neutrophil activation in a swine model of hemorrhagic shock. Resuscitation 60 (1): 91–99. https://doi.org/10.1016/j.resuscitation.2003.08.006.

    Article  PubMed  Google Scholar 

  12. Rhee, P., D. Burris, C. Kaufmann, M. Pikoulis, B. Austin, G. Ling, D. Harviel, and K. Waxman. 1998. Lactated Ringer's solution resuscitation causes neutrophil activation after hemorrhagic shock. The Journal of Trauma 44 (2): 313–319.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, P., Y. Li, and J. Li. 2009. Hydroxyethyl starch 130/0.4 prevents the early pulmonary inflammatory response and oxidative stress after hemorrhagic shock and resuscitation in rats. International Immunopharmacology 9 (3): 347–353. https://doi.org/10.1016/j.intimp.2008.12.014.

    Article  PubMed  CAS  Google Scholar 

  14. Ozturk, T., E. Onur, M. Cerrahoglu, M. Calgan, F. Nizamoglu, and M. Civi. 2015. Immune and inflammatory role of hydroxyethyl starch 130/0.4 and fluid gelatin in patients undergoing coronary surgery. Cytokine 74 (1): 69–75. https://doi.org/10.1016/j.cyto.2014.10.002.

    Article  PubMed  CAS  Google Scholar 

  15. Pascual, J.L., L.E. Ferri, P. Chaudhury, A.J. Seely, G. Campisi, B. Giannias, D.C. Evans, and N.V. Christou. 2001. Hemorrhagic shock resuscitation with a low molecular weight starch reduces neutrophil-endothelial interactions and vessel leakage in vivo. Surgical Infections 2 (4): 275–287; discussion 287-278. https://doi.org/10.1089/10962960152813313.

    Article  PubMed  CAS  Google Scholar 

  16. Kahvegian, M., D. Aya Otsuki, C. Holms, C. Oliveira Massoco, J.O. Costa Auler Junior, and D. Tabacchi Fantoni. 2013. Modulation of inflammation during acute normovolemic anemia with different fluid replacement. Minerva Anestesiologica 79 (10): 1113–1125.

    PubMed  CAS  Google Scholar 

  17. McBride, D., A.L. Raisis, G. Hosgood, and L. Smart. 2017. Hydroxyethyl starch 130/0.4 compared with 0.9% NaCl administered to greyhounds with haemorrhagic shock. Veterinary Anaesthesia and Analgesia 44 (3): 444–451. https://doi.org/10.1016/j.vaa.2016.05.015.

    Article  PubMed  Google Scholar 

  18. Raisis, A.L., L. Smart, E. Drynan, and G. Hosgood. 2015. Cardiovascular function during maintenance of anaesthesia with isoflurane or alfaxalone infusion in greyhounds experiencing blood loss. Veterinary Anaesthesia and Analgesia 42 (2): 133–141. https://doi.org/10.1111/vaa.12190.

    Article  PubMed  CAS  Google Scholar 

  19. Torres Filho, I.P., L.N. Torres, C. Salgado, and M.A. Dubick. 2016. Plasma syndecan-1 and heparan sulfate correlate with microvascular glycocalyx degradation in hemorrhaged rats after different resuscitation fluids. American Journal of Physiology. Heart and Circulatory Physiology 310 (11): H1468–H1478. https://doi.org/10.1152/ajpheart.00006.2016.

    Article  PubMed  Google Scholar 

  20. Torres, L.N., J.L. Sondeen, M.A. Dubick, and I.T. Filho. 2014. Systemic and microvascular effects of resuscitation with blood products after severe hemorrhage in rats. Journal of Trauma and Acute Care Surgery 77 (5): 716–723. https://doi.org/10.1097/ta.0000000000000448.

    Article  PubMed  Google Scholar 

  21. Kozar, R.A., Z. Peng, R. Zhang, J.B. Holcomb, S. Pati, P. Park, T.C. Ko, and A. Paredes. 2011. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesthesia and Analgesia 112 (6): 1289–1295. https://doi.org/10.1213/ANE.0b013e318210385c.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Powell, M., M. Mathru, A. Brandon, R. Patel, and M. Frolich. 2014. Assessment of endothelial glycocalyx disruption in term parturients receiving a fluid bolus before spinal anesthesia: A prospective observational study. International Journal of Obstetric Anesthesia 23 (4): 330–334. https://doi.org/10.1016/j.ijoa.2014.06.001.

    Article  PubMed  CAS  Google Scholar 

  23. Yu, T.C., F.L. Yang, B.G. Hsu, W.T. Wu, S.C. Chen, R.P. Lee, and Y.M. Subeq. 2014. Deleterious effects of aggressive rapid crystalloid resuscitation on treatment of hyperinflammatory response and lung injury induced by hemorrhage in aging rats. The Journal of Surgical Research 187 (2): 587–595. https://doi.org/10.1016/j.jss.2013.10.061.

    Article  PubMed  CAS  Google Scholar 

  24. Lygizos, M.I., Y. Yang, C.J. Altmann, K. Okamura, A.A. Hernando, M.J. Perez, L.P. Smith, D.E. Koyanagi, A. Gandjeva, R. Bhargava, R.M. Tuder, S. Faubel, and E.P. Schmidt. 2013. Heparanase mediates renal dysfunction during early sepsis in mice. Physiol Rep 1 (6): e00153. https://doi.org/10.1002/phy2.153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bitan, M., L. Weiss, M. Zeira, E. Zcharia, S. Slavin, A. Nagler, and I. Vlodavsky. 2010. Heparanase promotes engraftment and prevents graft versus host disease in stem cell transplantation. PLoS One 5 (4): e10135. https://doi.org/10.1371/journal.pone.0010135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Timmermans, K., M. Kox, M. Vaneker, M. van den Berg, A. John, A. van Laarhoven, H. van der Hoeven, G.J. Scheffer, and P. Pickkers. 2016. Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients. Intensive Care Medicine 42 (4): 551–561. https://doi.org/10.1007/s00134-015-4205-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Di Battista, A.P., S.B. Rizoli, B. Lejnieks, A. Min, M.Y. Shiu, H.T. Peng, A.J. Baker, et al. 2016. Sympathoadrenal activation is associated with acute traumatic coagulopathy and endotheliopathy in isolated brain injury. Shock 46 (3 Suppl 1): 96–103. https://doi.org/10.1097/shk.0000000000000642.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Johansson, P.I., H.H. Henriksen, J. Stensballe, M. Gybel-Brask, J.C. Cardenas, L.A. Baer, B.A. Cotton, J.B. Holcomb, C.E. Wade, and S.R. Ostrowski. 2017. Traumatic endotheliopathy: A prospective observational study of 424 severely injured patients. Annals of Surgery 265 (3): 597–603. https://doi.org/10.1097/sla.0000000000001751.

    Article  PubMed  Google Scholar 

  29. Ostrowski, S.R., S. Gaini, C. Pedersen, and P.I. Johansson. 2015. Sympathoadrenal activation and endothelial damage in patients with varying degrees of acute infectious disease: An observational study. Journal of Critical Care 30 (1): 90–96. https://doi.org/10.1016/j.jcrc.2014.10.006.

    Article  PubMed  Google Scholar 

  30. Chelazzi, C., G. Villa, P. Mancinelli, A.R. De Gaudio, and C. Adembri. 2015. Glycocalyx and sepsis-induced alterations in vascular permeability. Critical Care 19: 26. https://doi.org/10.1186/s13054-015-0741-z.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sallisalmi, M., J. Tenhunen, R. Yang, N. Oksala, and V. Pettila. 2012. Vascular adhesion protein-1 and syndecan-1 in septic shock. Acta Anaesthesiologica Scandinavica 56 (3): 316–322. https://doi.org/10.1111/j.1399-6576.2011.02578.x.

    Article  PubMed  CAS  Google Scholar 

  32. Nelson, A., I. Berkestedt, A. Schmidtchen, L. Ljunggren, and M. Bodelsson. 2008. Increased levels of glycosaminoglycans during septic shock: Relation to mortality and the antibacterial actions of plasma. Shock 30 (6): 623–627. https://doi.org/10.1097/SHK.0b013e3181777da3.

    Article  PubMed  CAS  Google Scholar 

  33. Yagmur, E., A. Koch, M. Haumann, R. Kramann, C. Trautwein, and F. Tacke. 2012. Hyaluronan serum concentrations are elevated in critically ill patients and associated with disease severity. Clinical Biochemistry 45 (1–2): 82–87. https://doi.org/10.1016/j.clinbiochem.2011.10.016.

    Article  PubMed  CAS  Google Scholar 

  34. Smart, L., S.P.J. Macdonald, S. Burrows, E. Bosio, G. Arendts, and D.M. Fatovich. 2017. Endothelial glcyocalyx biomarkers increase in patients with infection during emergency department treatment. Journal of Critical Care 42: 304–309. https://doi.org/10.1016/j.jcrc.2017.07.001.

    Article  PubMed  Google Scholar 

  35. Schimmer, R.C., M. Urner, S. Voigtsberger, C. Booy, B. Roth Z'Graggen, B. Beck-Schimmer, and M. Schlapfer. 2016. Inflammatory kidney and liver tissue response to different hydroxyethylstarch (HES) preparations in a rat model of early sepsis. PLoS One 11 (3): e0151903. https://doi.org/10.1371/journal.pone.0151903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Voigtsberger, S., M. Urner, M. Hasler, B. Roth Z'Graggen, C. Booy, D.R. Spahn, and B. Beck-Schimmer. 2014. Modulation of early inflammatory response by different balanced and non-balanced colloids and crystalloids in a rodent model of endotoxemia. PLoS One 9 (4): e93863. https://doi.org/10.1371/journal.pone.0093863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Fraser, J.R., T.C. Laurent, and U.B. Laurent. 1997. Hyaluronan: Its nature, distribution, functions and turnover. Journal of Internal Medicine 242 (1): 27–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Claire Neil and Kirsty Townsend for their assistance with laboratory work. We also thank Dr. Claire Sharp for assistance with the experimental model and Assoc Prof Kwok Ming Ho for manuscript revision.

Funding

This work was supported by grants awarded by the Canine Research Foundation and the American College of Veterinary Emergency and Critical Care, and departmental funds from the Centre for Clinical Research in Emergency Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Smart.

Ethics declarations

This study was approved by the Institutional Animal Ethics Committee (R2666/14) and was conducted by specialist anesthesia and critical care veterinarians in accordance with the Australian Code for the Care and Use of Animals for Scientific Purposes.

Additional information

The results of this study were, in part, published in abstract form (Critical Care 2018, 22(Suppl 1):P293) as a part of the International Symposium on Intensive Care and Emergency Medicine, Brussels, Belgium (March, 2018).

Electronic supplementary material

ESM 1

(DOCX 100 kb)

ESM 2

(DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smart, L., Boyd, C.J., Claus, M.A. et al. Large-Volume Crystalloid Fluid Is Associated with Increased Hyaluronan Shedding and Inflammation in a Canine Hemorrhagic Shock Model. Inflammation 41, 1515–1523 (2018). https://doi.org/10.1007/s10753-018-0797-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0797-4

KEY WORDS

Navigation