Skip to main content

Advertisement

Log in

Rapamycin Alleviates Hormone Imbalance-Induced Chronic Nonbacterial Inflammation in Rat Prostate Through Activating Autophagy via the mTOR/ULK1/ATG13 Signaling Pathway

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Chronic prostatitis (CP) is a clinically common disease with high morbidity. It affects the patients’ quality of life (QoL) as well as physical and mental health seriously due to the recurring symptoms of lower urinary tract and genitalia. As the opinions about the etiology of CP are still not uniform, it is very difficult to be treated or even cured. Autophagy is a highly conserved physiological function which is widely found in eukaryotic cells. In general, cells maintain a certain level of autophagy under physiological conditions, and the basal level of autophagy can be regulated by a variety of autophagy-related genes under stress such as hunger, infection, trauma, and other circumstances. Therefore, the main purpose of this study is to investigate the role of autophagy in chronic nonbacterial prostatitis (CNP, also called CP). In this paper, we established the CNP model via hypodermic injection of 17β-estradiol and subsequently abdominal rapamycin (a common autophagy inducer) treatment based on castrated rats. Then, the expression of nuclear factor-κB (NF-κB), interleukin-1β (IL-1β), and autophagy-related markers as well as autophagosome formation in prostate tissues, peripheral blood mononuclear cells (PBMCs), and serum of rats were evaluated respectively. In addition to some histological changes in the prostate tissues, we found the levels of NF-κB and IL-1β were significantly increased in the model group, along with significantly suppressed autophagy, whereas rapamycin could reverse these effects which involved in the mTOR/ULK1/ATG13 signaling pathway. In conclusion, our results suggested that rapamycin could ameliorate hormone imbalance-induced CNP by activating autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CP:

Chronic prostatitis

CNP:

Chronic nonbacterial prostatitis

NF-κB:

Nuclear factor-κB

IL-1β:

Interleukin-1β

ABP:

Acute bacterial prostatitis

CBP:

Chronic bacterial prostatitis

CP/CPPS:

Chronic prostatitis/chronic pelvic pain syndrome

AIP:

Asymptomatic inflammatory prostatitis

NIH:

National Institutes of Health

QoL:

Quality of life

IBD:

Inflammatory bowel disease

qRT-PCR:

Quantitative real-time PCR

HE:

Hematoxylin-eosin

ELISA:

Enzyme-linked immunosorbent assay

PBMCs:

Peripheral blood mononuclear cells

IHC:

Immunohistochemistry

PBS:

Phosphate-buffered saline

ATG:

Autophagy-related gene

SDS:

Sodium dodecyl sulfate

BSA:

Bull serum albumin

TBS:

Tris-buffered saline

TBST:

Tris-buffered saline with Tween 20

mTOR:

Mammalian target of rapamycin

ULK1:

Unc-51 like autophagy activating kinase 1

T:

Testosterone

E2:

Estrogen

RAPA:

Rapamycin

P-ULK1:

Phosphorylated ULK1

Ser:

Serine

References

  1. Hu, Y., X. Niu, G. Wang, J. Huang, M. Liu, et al. 2016. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function through increased endothelial dysfunction, oxidative stress, apoptosis, and corporal fibrosis in a rat model. Andrology 4 (6): 1209–1216.

    Article  PubMed  CAS  Google Scholar 

  2. Schwartz, E.S., A. Xie, J.H. La, and G.F. Gebhart. 2015. Nociceptive and inflammatory mediator upregulation in a mouse model of chronic prostatitis. Pain 156 (8): 1537–1544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rees, J., M. Abrahams, A. Doble, and A. Cooper. 2015. Diagnosis and treatment of chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome: a consensus guideline. BJU International 116 (4): 509–525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ihsan, A.U., F.U. Khan, W. Nawaz, M.Z. Khan, M. Yang, and X. Zhou. 2017. Establishment of a rat model of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) induced by immunization with a novel peptide T2. Biomedicine & Pharmacotherapy 91: 687–692.

    Article  CAS  Google Scholar 

  5. Cohen, J.M., A.P. Fagin, E. Hariton, J.R. Niska, M.W. Pierce, A. Kuriyama, J.S. Whelan, J.L. Jackson, and J.D. Dimitrakoff. 2012. Therapeutic intervention for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS): a systematic review and meta-analysis. PLoS One 7 (8): e41941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hu, C., H. Yang, Y. Zhao, X. Chen, Y. Dong, et al. 2016. The role of inflammatory cytokines and ERK1/2 signaling in chronic prostatitis/chronic pelvic pain syndrome with related mental health disorders. Scientific Reports 6: 28608.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Motrich, R.D., M.L. Breser, L.R. Sanchez, G.J. Godoy, I. Prinz, et al. 2016. IL-17 is not essential for inflammation and chronic pelvic pain development in an experimental model of chronic prostatitis/chronic pelvic pain syndrome. Pain 157 (3): 585–597.

    Article  PubMed  CAS  Google Scholar 

  8. Talero, E., A. Alcaide, J. Avila-Roman, S. Garcia-Maurino, D. Vendramini-Costa, et al. 2016. Expression patterns of sirtuin 1-AMPK-autophagy pathway in chronic colitis and inflammation-associated colon neoplasia in IL-10-deficient mice. International Immunopharmacology 35: 248–256.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang, Q., J. Sun, Y. Wang, W. He, L. Wang, Y. Zheng, J. Wu, Y. Zhang, and X. Jiang. 2017. Antimycobacterial and anti-inflammatory mechanisms of baicalin via induced autophagy in macrophages infected with Mycobacterium tuberculosis. Frontiers in Microbiology 8: 2142.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Junkins, R.D., C. McCormick, and T.J. Lin. 2014. The emerging potential of autophagy-based therapies in the treatment of cystic fibrosis lung infections. Autophagy 10 (3): 538–547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. De Nunzio, C., S. Giglio, A. Stoppacciaro, M. Gacci, R. Cirombella, et al. 2017. Autophagy deactivation is associated with severe prostatic inflammation in patients with lower urinary tract symptoms and benign prostatic hyperplasia. Oncotarget 8 (31): 50904–50910.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bullon, P., M.D. Cordero, J.L. Quiles, M.C. Ramirez-Tortosa, A. Gonzalez-Alonso, et al. 2012. Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation. BMC Medicine 10: 122.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Codogno, P., and A.J. Meijer. 2013. Autophagy in the liver. Journal of Hepatology 59 (2): 389–391.

    Article  PubMed  Google Scholar 

  14. Zaglia, T., G. Milan, A. Ruhs, M. Franzoso, E. Bertaggia, N. Pianca, A. Carpi, P. Carullo, P. Pesce, D. Sacerdoti, C. Sarais, D. Catalucci, M. Krüger, M. Mongillo, and M. Sandri. 2014. Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy. Journal of Clinical Investigation 124 (6): 2410–2424.

    Article  PubMed  CAS  Google Scholar 

  15. Osorio, J. 2014. Diabetes: Protective role of autophagy in pancreatic beta cells. Nature Reviews Endocrinology 10 (10): 575.

    Article  PubMed  Google Scholar 

  16. Scharl, M., and G. Rogler. 2012. Inflammatory bowel disease: dysfunction of autophagy? Digestive Diseases 30 (Suppl 3): 12–19.

    Article  PubMed  Google Scholar 

  17. Yoshizaki, T., C. Kusunoki, M. Kondo, M. Yasuda, S. Kume, K. Morino, O. Sekine, S. Ugi, T. Uzu, Y. Nishio, A. Kashiwagi, and H. Maegawa. 2012. Autophagy regulates inflammation in adipocytes. Biochemical and Biophysical Research Communications 417 (1): 352–357.

    Article  PubMed  CAS  Google Scholar 

  18. Gukovsky, I., N. Li, J. Todoric, A. Gukovskaya, and M. Karin. 2013. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 144 (6): 1199–1209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jia, Y.L., X. Liu, J.Y. Yan, L.M. Chong, L. Li, A.C. Ma, L. Zhou, and Z.Y. Sun. 2015. The alteration of inflammatory markers and apoptosis on chronic prostatitis induced by estrogen and androgen. International Urology and Nephrology 47 (1): 39–46.

    Article  PubMed  CAS  Google Scholar 

  20. Vykhovanets, E.V., M.I. Resnick, G.T. MacLennan, and S. Gupta. 2007. Experimental rodent models of prostatitis: limitations and potential. Prostate Cancer and Prostatic Diseases 10 (1): 15–29.

    Article  PubMed  CAS  Google Scholar 

  21. Said, M.M., and M.C. Bosland. 2017. The anti-inflammatory effect of montelukast, a cysteinyl leukotriene receptor-1 antagonist, against estradiol-induced nonbacterial inflammation in the rat prostate. Naunyn-Schmiedeberg's Archives of Pharmacology 390 (2): 197–205.

    Article  PubMed  CAS  Google Scholar 

  22. Fujishima, Y., S. Nishiumi, A. Masuda, J. Inoue, N.M. Nguyen, et al. 2011. Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-kappaB activation. Archives of Biochemistry and Biophysics 506 (2): 223–235.

    Article  PubMed  CAS  Google Scholar 

  23. Atreya, I., R. Atreya, and M.F. Neurath. 2008. NF-kappaB in inflammatory bowel disease. Journal of Internal Medicine 263 (6): 591–596.

    Article  PubMed  CAS  Google Scholar 

  24. Mohammed-Ali, Z., G.L. Cruz, and J.G. Dickhout. 2015. Crosstalk between the unfolded protein response and NF-kappaB-mediated inflammation in the progression of chronic kidney disease. Journal of Immunology Research 2015: 428508.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Choi, S., H. Shin, H. Song, and H.J. Lim. 2014. Suppression of autophagic activation in the mouse uterus by estrogen and progesterone. Journal of Endocrinology 221 (1): 39–50.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, F., J. Xiao, Y. Shen, F. Yao, and Y. Chen. 2014. Estrogen protects cardiomyocytes against lipopolysaccharide by inhibiting autophagy. Molecular Medicine Reports 10 (3): 1509–1512.

    Article  PubMed  CAS  Google Scholar 

  27. Mei, J., X.Y. Zhu, L.P. Jin, Z.L. Duan, D.J. Li, and M.Q. Li. 2015. Estrogen promotes the survival of human secretory phase endometrial stromal cells via CXCL12/CXCR4 up-regulation-mediated autophagy inhibition. Human Reproduction 30 (7): 1677–1689.

    Article  PubMed  CAS  Google Scholar 

  28. Boya, P., F. Reggiori, and P. Codogno. 2013. Emerging regulation and functions of autophagy. Nature Cell Biology 15 (7): 713–720.

    Article  PubMed  CAS  Google Scholar 

  29. Klionsky, D.J., F.C. Abdalla, H. Abeliovich, R.T. Abraham, A. Acevedo-Arozena, et al. 2012. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8 (4): 445–544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li, L., H. Chen, Y. Gao, Y.W. Wang, G.Q. Zhang, S.H. Pan, L. Ji, R. Kong, G. Wang, Y.H. Jia, X.W. Bai, and B. Sun. 2016. Long noncoding RNA MALAT1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy. Molecular Cancer Therapeutics 15 (9): 2232–2243.

    Article  PubMed  CAS  Google Scholar 

  31. Nakahira, K., S.M. Cloonan, K. Mizumura, A.M. Choi, and S.W. Ryter. 2014. Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxidants & Redox Signaling 20 (3): 474–494.

    Article  CAS  Google Scholar 

  32. Pei, F., H.S. Wang, Z. Chen, and L. Zhang. 2016. Autophagy regulates odontoblast differentiation by suppressing NF-kappaB activation in an inflammatory environment. Cell Death & Disease 7: e2122.

    Article  CAS  Google Scholar 

  33. Qu, X., Z. Zou, Q. Sun, K. Luby-Phelps, P. Cheng, et al. 2007. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128 (5): 931–946.

    Article  PubMed  CAS  Google Scholar 

  34. Mathew, R., C.M. Karp, B. Beaudoin, N. Vuong, G. Chen, H.Y. Chen, K. Bray, A. Reddy, G. Bhanot, C. Gelinas, R.S. DiPaola, V. Karantza-Wadsworth, and E. White. 2009. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137 (6): 1062–1075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. White, E., C. Karp, A.M. Strohecker, Y. Guo, and R. Mathew. 2010. Role of autophagy in suppression of inflammation and cancer. Current Opinion in Cell Biology 22 (2): 212–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Bachetti, T., S. Chiesa, P. Castagnola, D. Bani, E. Di Zanni, et al. 2013. Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Annals of the Rheumatic Diseases 72 (6): 1044–1052.

    Article  PubMed  CAS  Google Scholar 

  37. Xi, C., J. Zhou, S. Du, and S. Peng. 2016. Autophagy upregulation promotes macrophages to escape mesoporous silica nanoparticle (MSN)-induced NF-kappaB-dependent inflammation. Inflammation Research 65 (4): 325–341.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by grant from the National Natural Science Foundation of China (Nos. 81470923, 81470986, 81770078, and 81770688).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Ethics declarations

This study was approved by the Animal Care and Use Committee of Wuhan University Renmin Hospital. All animal care and experimental procedures were performed in accordance with the guidelines of Wuhan University Renmin Hospital.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Lu, J., Chen, X. et al. Rapamycin Alleviates Hormone Imbalance-Induced Chronic Nonbacterial Inflammation in Rat Prostate Through Activating Autophagy via the mTOR/ULK1/ATG13 Signaling Pathway. Inflammation 41, 1384–1395 (2018). https://doi.org/10.1007/s10753-018-0786-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0786-7

KEY WORDS

Navigation