Skip to main content

Advertisement

Log in

Ibrutinib Exacerbates Bleomycin-Induced Pulmonary Fibrosis via Promoting Inflammation

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease with high mortality rate. The etiology is unknown and treatment choices are limited. Thus, there is great interest to investigate novel agents for IPF therapy. Ibrutinib, BTK, and ITK irreversible inhibitor is a FDA-approved small molecule for the clinical therapy of B cell lymphoma. Its role in pulmonary fibrosis remains unknown. In this study, we investigated the anti-fibrotic activity of ibrutinib. Strikingly, ibrutinib did not inhibit but exacerbated bleomycin-induced pulmonary fibrosis by increased epithelial cell apoptosis, and inflammation in the lung. The upregulated TGF-β and EMT transformation also contributes to enhanced myofibroblast differentiation and ECM deposition. Our findings reveal the detrimental effects of ibrutinib against bleomycin-mediated fibrosis and added to the understanding of IPF pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stowasser, S., and C. Hallmann. 2015. New guideline for idiopathic pulmonary fibrosis. Lancet 386 (10006): 1823–1824.

    Article  PubMed  Google Scholar 

  2. Raghu, G., H.R. Collard, J.J. Egan, et al. 2011. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. American Journal of Respiratory and Critical Care Medicine 183 (6): 788–824.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Adamali, H.I., and T.M. Maher. 2012. Current and novel drug therapies for idiopathic pulmonary fibrosis. Drug Design, Development and Therapy 6: 261–272.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Travis, W.D., U. Costabel, D.M. Hansell, et al. 2013. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. American Journal of Respiratory and Critical Care Medicine 188 (6): 733–748.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Williamson, J.D., L.R. Sadofsky, and S.P. Hart. 2015. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis. Experimental Lung Research 41 (2): 57–73.

    Article  PubMed  CAS  Google Scholar 

  6. Bringardner, B.D., C.P. Baran, T.D. Eubank, et al. 2008. The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis. Antioxidants & Redox Signaling 10 (2): 287–301.

    Article  CAS  Google Scholar 

  7. Kolahian, S., I.E. Fernandez, O. Eickelberg, et al. 2016. Immune mechanisms in pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology 55 (3): 309–322.

    Article  PubMed  CAS  Google Scholar 

  8. Satterthwaite, A.B., and O.N. Witte. 2000. The role of Bruton’s tyrosine kinase in B-cell development and function: a genetic perspective. Immunological Reviews 175: 120–127.

    Article  PubMed  CAS  Google Scholar 

  9. Rawlings, D.J., D.C. Saffran, S. Tsukada, et al. 1993. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science 261 (5119): 358–361.

    Article  PubMed  CAS  Google Scholar 

  10. Maas, A., and R.W. Hendriks. 2001. Role of Bruton’s tyrosine kinase in B cell development. Developmental Immunology 8 (3–4): 171–181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dubovsky, J.A., K.A. Beckwith, G. Natarajan, et al. 2013. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood 122 (15): 2539–2549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Miller, A.T., H.M. Wilcox, Z. Lai, et al. 2004. Signaling through Itk promotes T helper 2 differentiation via negative regulation of T-bet. Immunity 21 (1): 67–80.

    Article  PubMed  CAS  Google Scholar 

  13. Gomez-Rodriguez, J., E.A. Wohlfert, R. Handon, et al. 2014. Itk-mediated integration of T cell receptor and cytokine signaling regulates the balance between Th17 and regulatory T cells. The Journal of Experimental Medicine 211 (3): 529–543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Davis, R.E., V.N. Ngo, G. Lenz, et al. 2010. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463 (7277): 88–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kuppers, R. 2005. Mechanisms of B-cell lymphoma pathogenesis. Nature Reviews Cancer 5 (4): 251–262.

    Article  PubMed  CAS  Google Scholar 

  16. Byrd, J.C., J.R. Brown, S. O'Brien, et al. 2014. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. The New England Journal of Medicine 371 (3): 213–223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Barrientos, J., and K. Rai. 2013. Ibrutinib: a novel Bruton’s tyrosine kinase inhibitor with outstanding responses in patients with chronic lymphocytic leukemia. Leukemia & Lymphoma 54 (8): 1817–1820.

    Article  CAS  Google Scholar 

  18. Brown, J.R., J.C. Barrientos, P.M. Barr, et al. 2015. The Bruton tyrosine kinase inhibitor ibrutinib with chemoimmunotherapy in patients with chronic lymphocytic leukemia. Blood 125 (19): 2915–2922.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chang, B.Y., M.M. Huang, M. Francesco, et al. 2011. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Research & Therapy 13 (4): R115.

    Article  CAS  Google Scholar 

  20. Honigberg, L.A., A.M. Smith, M. Sirisawad, et al. 2010. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proceedings of the National Academy of Sciences of the United States of America 107 (29): 13075–13080.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sagiv-Barfi, I., H.E. Kohrt, D.K. Czerwinski, et al. 2015. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proceedings of the National Academy of Sciences of the United States of America 112 (9): E966–E972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Schutt, S.D., J. Fu, H. Nguyen, et al. 2015. Inhibition of BTK and ITK with ibrutinib is effective in the prevention of chronic graft-versus-host disease in mice. PLoS One 10 (9): e0137641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dubovsky, J.A., R. Flynn, J. Du, et al. 2014. Ibrutinib treatment ameliorates murine chronic graft-versus-host disease. The Journal of Clinical Investigation 124 (11): 4867–4876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dong, Y., Y. Geng, L. Li, et al. 2015. Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. The Journal of Experimental Medicine 212 (2): 235–252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang, Q., H. Li, Y. Yao, et al. 2010. The overexpression of heparin-binding epidermal growth factor is responsible for Th17-induced airway remodeling in an experimental asthma model. Journal of Immunology 185 (2): 834–841.

    Article  CAS  Google Scholar 

  26. Wang, Q., H. Li, Y. Yao, et al. 2016. HB-EGF-promoted airway smooth muscle cells and their progenitor migration contribute to airway smooth muscle remodeling in asthmatic mouse. Journal of Immunology 196 (5): 2361–2367.

    Article  CAS  Google Scholar 

  27. McGrath, E.E., and A.B. Millar. 2012. Hot off the breath: triple therapy for idiopathic pulmonary fibrosis—hear the PANTHER roar. Thorax 67 (2): 97–98.

    Article  PubMed  Google Scholar 

  28. King, T.E., Jr., W.Z. Bradford, S. Castro-Bernardini, et al. 2014. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. The New England Journal of Medicine 370 (22): 2083–2092.

    Article  PubMed  CAS  Google Scholar 

  29. Richeldi, L., R.M. du Bois, G. Raghu, et al. 2014. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. The New England Journal of Medicine 370 (22): 2071–2082.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang, Z., X. Yu, X. Fang, et al. 2015. Preventive effects of vitamin D treatment on bleomycin-induced pulmonary fibrosis. Scientific Reports 5: 17638.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kinder, B.W., K.K. Brown, M.I. Schwarz, et al. 2008. Baseline BAL neutrophilia predicts early mortality in idiopathic pulmonary fibrosis. Chest 133 (1): 226–232.

    Article  PubMed  CAS  Google Scholar 

  32. Obayashi, Y., I. Yamadori, J. Fujita, et al. 1997. The role of neutrophils in the pathogenesis of idiopathic pulmonary fibrosis. Chest 112 (5): 1338–1343.

    Article  PubMed  CAS  Google Scholar 

  33. Gregory, A.D., C.R. Kliment, H.E. Metz, et al. 2015. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. Journal of Leukocyte Biology 98 (2): 143–152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chua, F., S.E. Dunsmore, P.H. Clingen, et al. 2007. Mice lacking neutrophil elastase are resistant to bleomycin-induced pulmonary fibrosis. The American Journal of Pathology 170 (1): 65–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Takemasa, A., Y. Ishii, and T. Fukuda. 2012. A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice. The European Respiratory Journal 40 (6): 1475–1482.

    Article  PubMed  CAS  Google Scholar 

  36. Henry, M.T., K. McMahon, A.J. Mackarel, et al. 2002. Matrix metalloproteinases and tissue inhibitor of metalloproteinase-1 in sarcoidosis and IPF. The European Respiratory Journal 20 (5): 1220–1227.

    Article  PubMed  CAS  Google Scholar 

  37. Leask, A., and D.J. Abraham. 2004. TGF-beta signaling and the fibrotic response. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 18 (7): 816–827.

    Article  CAS  Google Scholar 

  38. Gauldie, J., P.J. Sime, Z. Xing, et al. 1999. Transforming growth factor-beta gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis. Current Topics in Pathology Ergebnisse der Pathologie 93: 35–45.

    PubMed  CAS  Google Scholar 

  39. Bartram, U., and C.P. Speer. 2004. The role of transforming growth factor beta in lung development and disease. Chest 125 (2): 754–765.

    Article  PubMed  Google Scholar 

  40. Willis, B.C., and Z. Borok. 2007. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. American Journal of Physiology Lung Cellular and Molecular Physiology 293 (3): L525–L534.

    Article  PubMed  CAS  Google Scholar 

  41. Phan, S.H. 2002. The myofibroblast in pulmonary fibrosis. Chest 122 (6 Suppl): 286S–289S.

    Article  PubMed  Google Scholar 

  42. Hashimoto, N., S.H. Phan, K. Imaizumi, et al. 2010. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology 43 (2): 161–172.

    Article  PubMed  CAS  Google Scholar 

  43. Tanjore, H., X.C. Xu, V.V. Polosukhin, et al. 2009. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. American Journal of Respiratory and Critical Care Medicine 180 (7): 657–665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Cappuccini, F., T. Eldh, D. Bruder, et al. 2011. New insights into the molecular pathology of radiation-induced pneumopathy. Radiotherapy and Oncology : Journal of the European Society for Therapeutic Radiology and Oncology 101 (1): 86–92.

    Article  CAS  Google Scholar 

  45. Eferl, R., P. Hasselblatt, M. Rath, et al. 2008. Development of pulmonary fibrosis through a pathway involving the transcription factor Fra-2/AP-1. Proceedings of the National Academy of Sciences of the United States of America 105 (30): 10525–10530.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Strijbis, K., F.G. Tafesse, G.D. Fairn, et al. 2013. Bruton’s tyrosine kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages. PLoS Pathogens 9 (6): e1003446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ni Gabhann, J., E. Hams, S. Smith, et al. 2014. Btk regulates macrophage polarization in response to lipopolysaccharide. PLoS One 9 (1): e85834.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mueller, H., A. Stadtmann, H. Van Aken, et al. 2010. Tyrosine kinase Btk regulates E-selectin-mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) gamma2 and PI3Kgamma pathways. Blood 115 (15): 3118–3127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Khare, A., B. Viswanathan, R. Gund, et al. 2011. Role of Bruton’s tyrosine kinase in macrophage apoptosis. Apoptosis : An International Journal on Programmed Cell Death 16 (4): 334–346.

    Article  CAS  Google Scholar 

  50. Gray P, Dunne A, Brikos C, et al. MyD88 adapter-like (Mal) is phosphorylated by Bruton's tyrosine kinase during TLR2 and TLR4 signal transduction. The Journal of biological chemistry 2006;281(15):10489-10495.

  51. Rushworth SA, Bowles KM, Barrera LN, et al. BTK inhibitor ibrutinib is cytotoxic to myeloma and potently enhances bortezomib and lenalidomide activities through NF-kappaB. Cellular signalling 2013;25(1):106-112.

  52. Honda F, Kano H, Kanegane H, et al. The kinase Btk negatively regulates the production of reactive oxygen species and stimulation-induced apoptosis in human neutrophils. Nature immunology 2012;13(4):369-378.

  53. Islam TC, Smith CI. The cellular phenotype conditions Btk for cell survival or apoptosis signaling. Immunological reviews 2000;178:49-63.

  54. Khare A, Viswanathan B, Gund R, et al. Role of Bruton's tyrosine kinase in macrophage apoptosis. Apoptosis : an international journal on programmed cell death 2011;16(4):334-346.

Download references

Funding

Funding

This work was supported by research funding from the National Natural Science Foundation of China (81170015) and Zhejiang Provincial Natural Science Foundation of China (LY15H010001).

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions

Conception and design of research: H.L.; performed the experiments: Y.G., B.H., Y.Y., M.Q., G.L.; analyzed the data and interpreted the results of experiments: Y.G., B.H., H.L.; prepared the figures and drafted the manuscript: Y.G., B.H., Y.Y., M.Q., H.L.; edited and revised the manuscript: Y.G., D.X., H.L

Corresponding author

Correspondence to Hequan Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Huang, B., Yang, Y. et al. Ibrutinib Exacerbates Bleomycin-Induced Pulmonary Fibrosis via Promoting Inflammation. Inflammation 41, 904–913 (2018). https://doi.org/10.1007/s10753-018-0745-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0745-3

KEY WORDS

Navigation