Skip to main content
Log in

Burn-Induced Multiple Organ Injury and Protective Effect of Lutein in Rats

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Thermal injury may lead to multiple organ dysfunction through release of proinflammatory mediators and reactive oxygen radicals. This study investigated the effects of thermal injury on remote organs of rats and the possible protective effect of lutein. Thermal trauma was induced in the back of rats by exposing them to 90 °C bath for 10 s. Rats were sacrificed 48 h after burn, and blood samples were collected to monitor liver and kidney functions. Tissue samples from liver, kidneys, and lungs were taken for studying oxidative stress parameters, gene expressions of TNF-α and Casp-3, besides histopathological examination. Skin scald injury caused significant elevations of liver and kidney function biomarkers in the serum. In tissue samples, increments of MDA, GPx, and 8-OHdG were recorded while GSH level and the activities of CAT and SOD were suppressed. The expressions of TNF-α and caspase-3 mRNA were increased, and histopathological results revealed remote organ injury. Oral administration of lutein (250 mg/kg) resulted in amelioration of the biochemical and molecular changes induced by burn as well as the histopathological alterations. According to the findings of the present study, lutein possesses anti-oxidant, anti-inflammatory, and anti-apoptotic effects that protect against burn-induced damage in remote organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cevik, O., R. Oba, C. Macit, et al. 2012. Lycopene inhibits caspase-3 activity and reduces oxidative organ damage in a rat model of thermal injury. Burns 38: 861–871.

    Article  PubMed  Google Scholar 

  2. Toklu, H.Z., G. Sener, N. Jahovic, et al. 2006. Beta-glucan protects against burn-induced oxidative organ damage in rats. International Immunopharmacology 6: 156–169.

    Article  PubMed  CAS  Google Scholar 

  3. Gökakın, A.K., M. Atabey, K. Deveci, et al. 2014. The effects of sildenafil in liver and kidney injury in a rat model of severe scald burn: A biochemical and histopathological study. Ulusal Travma ve Acil Cerrahi Dergisi 20: 319–327.

    Article  PubMed  Google Scholar 

  4. Gökakın, A.K., K. Deveci, A. Kurt, et al. 2013. The protective effects of sildenafil in acute lung injury in a rat model of severe scald burn: A biochemical and histopathological study. Burns 39: 1193–1199.

    Article  PubMed  Google Scholar 

  5. Demling, R.H., and C. Lalonde. 1990. Systemic lipid peroxidation and inflammation induced by thermal injury persists into the post resuscitation period. The Journal of Trauma 30: 69–74.

    Article  PubMed  CAS  Google Scholar 

  6. Cakir, B., and B.C. Yegen. 2004. Systemic responses to burn injury. Turkish Journal of Medical Sciences 34: 215–226.

    Google Scholar 

  7. Sayeed, M.M. 1998. Neutrophil signaling alteration: An adverse inflammatory response after burn shock. Medicina (B Aires) 58: 386–392.

    CAS  Google Scholar 

  8. Schwacha, M.G. 2003. Macrophages and post-burn immune dysfunction. Burns 29: 1–14.

    Article  PubMed  Google Scholar 

  9. Sener, G., H. Satiroglu, A.O. Sehirli, et al. 2003. Protective effect of aqueous garlic extract against oxidative organ damage in a rat model of thermal injury. Life Sciences 73: 81–91.

    Article  PubMed  CAS  Google Scholar 

  10. Krinsky, N.I., J.T. Landrum, and R.A. Bone. 2003. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annual Review of Nutrition 23: 171–201.

    Article  PubMed  CAS  Google Scholar 

  11. Vijayapadma, V., P. Ramyaa, D. Pavithra, et al. 2014. Protective effect of lutein against benzo(a)pyrene-induced oxidative stress in human erythrocytes. Toxicology and Industrial Health 30: 284–293.

    Article  PubMed  CAS  Google Scholar 

  12. Sindhu, E.R., A.P. Firdous, K.C. Preethi, et al. 2010. Carotenoid lutein protects rats from paracetamol-, carbon tetrachloride- and ethanol-induced hepatic damage. The Journal of Pharmacy and Pharmacology 62: 1054–1060.

    Article  PubMed  CAS  Google Scholar 

  13. Du, S.Y., Y.L. Zhang, R.X. Bai, et al. 2015. Lutein prevents alcohol-induced liver disease in rats by modulating oxidative stress and inflammation. International Journal of Clinical and Experimental Medicine 8: 8785–8793.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Hadad, N., and R. Levy. 2012. The synergistic anti-inflammatory effects of lycopene, lutein, β-carotene, and carnosic acid combinations via redox-based inhibition of NF-κB signaling. Free Radical Biology & Medicine 53: 1381–1391.

    Article  CAS  Google Scholar 

  15. Li, S.Y., F.K. Fung, Z.J. Fu, et al. 2012. Anti-inflammatory effects of lutein in retinal ischemic/hypoxic injury: In vivo and in vitro studies. Investigative Ophthalmology & Visual Science 53: 5976–5984.

    Article  CAS  Google Scholar 

  16. Kim, J.E., R.M. Clark, Y. Park, et al. 2012. Lutein decreases oxidative stress and inflammation in liver and eyes of guinea pigs fed a hypercholesterolemic diet. Nutrition Research and Practice 6: 113–119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sindhu, E.R., A.P. Firdous, V. Ramnath, et al. 2013. Effect of carotenoid lutein on N-nitrosodiethylamine-induced hepatocellular carcinoma and its mechanism of action. European Journal of Cancer Prevention 22: 320–327.

    Article  PubMed  CAS  Google Scholar 

  18. Reitman, S., and S. Frankel. 1957. Colorimetric determination of serum oxalacetic and glutamic pyruvic transaminase. American Journal of Clinical Pathology 28: 56–63.

    Article  PubMed  CAS  Google Scholar 

  19. Bais, R., and M. Philcox. 1994. Approved recommendation on IFCC methods for the measurement of catalytic concentration of enzymes. Part 8. IFCC method for LDH. European Journal of Clinical Chemistry and Clinical Biochemistry 32: 639–655.

    PubMed  CAS  Google Scholar 

  20. Fawcett, J.K., and J.E. Scott. 1960. A rapid and precise method for the determination of urea. Journal of Clinical Pathology 13: 156–159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Schirmeister, J., H. Willmann, and H. Kiefer. 1964. Plasma creatinine as rough indicator of renal function. Deutsche Medizinische Wochenschrift 89: 1018–1023.

    Article  PubMed  CAS  Google Scholar 

  22. Ohkawa, H., W. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95: 351–358.

    Article  PubMed  CAS  Google Scholar 

  23. Beutler, E.K., O. Duron, and B.M. Kefly. 1963. Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine 61: 882–888.

    PubMed  CAS  Google Scholar 

  24. Aebi, H. 1984. Catalase in vitro. Methods in Enzymology 105: 121–126.

    Article  PubMed  CAS  Google Scholar 

  25. Nishikimi, M., N. Appaji, and K. Yagi. 1972. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications 46: 849–854.

    Article  PubMed  CAS  Google Scholar 

  26. Rotruck, J.T., A.L. Pope, H.E. Ganther, et al. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Sciences 179: 588–590.

    Article  CAS  Google Scholar 

  27. Lodovici, M., C. Casalini, C. Briani, et al. 1997. Oxidative liver DNA damage in rats treated with pesticide mixtures. Toxicology 117: 55–60.

    Article  PubMed  CAS  Google Scholar 

  28. Livak, K.J., and H.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25: 402–408.

    Article  PubMed  CAS  Google Scholar 

  29. Bancroft, J.D., A. Stevens, and D.R. Turner. 1996. Theory and practice of histological techniques. 4th ed. New York: Churchill Livingstone.

    Google Scholar 

  30. Pintaudi, A.M., L. Tesoriere, N. D’Arpa, et al. 2000. Oxidative stress after moderate to extensive burning in humans. Free Radical Research 33: 139–146.

    Article  PubMed  CAS  Google Scholar 

  31. Agay, D., M. Andriollo-Sanchez, R. Claeyssen, et al. 2008. Interleukin-6, TNF-alpha and interleukin-1 beta levels in blood and tissue in severely burned rats. European Cytokine Network 19: 1–7.

    PubMed  CAS  Google Scholar 

  32. Ravat, F., J. Payre, P. Peslages, et al. 2011. Burn: An inflammatory process. Pathologie Biologie (Paris) 59: e63–e72.

    Article  CAS  Google Scholar 

  33. Sehirli, O., E. Sener, G. Sener, et al. 2008. Ghrelin improves burn-induced multiple organ injury by depressing neutrophil infiltration and the release of proinflammatory cytokines. Peptides 29: 1231–1240.

    Article  PubMed  CAS  Google Scholar 

  34. Sener, G., L. Kabasakal, S. Cetinel, et al. 2005. Leukotriene receptor blocker montelukast protects against burn-induced oxidative injury of the skin and remote organs. Burns 31: 587–596.

    Article  PubMed  Google Scholar 

  35. Zhang, J., Z. Xia, X. Li, et al. 2015. Effects of docosahexaenoic acid on inflammation associated cytokines in blood and pulmonary tissue of rats with severe scald injury. Zhonghua Shao Shang Za Zhi 31: 16–20.

    PubMed  Google Scholar 

  36. Liu, D., X. Wang, Y. Yang, et al. 2014. Effects of hydrogen-rich saline on liver of severely scalded rats with delayed resuscitation. Zhonghua Shao Shang Za Zhi 30: 506–511.

    PubMed  Google Scholar 

  37. Rocha, J., M. Eduardo-Figueira, and A. Barateiro. 2015. Erythropoietin reduces acute lung injury and multiple organ failure/dysfunction associated to a scald-burn inflammatory injury in the rat. Inflammation 38: 312–326.

    Article  PubMed  CAS  Google Scholar 

  38. Li, S., Y. Ding, Q. Niu, et al. 2015. Lutein has a protective effect on hepatotoxicity induced by arsenic via Nrf2 signaling. BioMed Research International 2015: 315205 10 pages.

    PubMed  PubMed Central  Google Scholar 

  39. Liu, Z.G., Z.C. Qi, W.L. Liu, et al. 2015. Lutein protects against ischemia/reperfusion injury in rat kidneys. Molecular Medicine Reports 11: 2179–2184.

    Article  PubMed  CAS  Google Scholar 

  40. Nidhi, B., G. Sharavana, T.R. Ramaprasad, et al. 2015. Lutein derived fragments exhibit higher antioxidant and anti-inflammatory properties than lutein in lipopolysaccharide induced inflammation in rats. Food & Function 6: 450–460.

    Article  CAS  Google Scholar 

  41. Marciniak, A., E. Szpringer, K. Lutnicki, et al. 2002. Influence of early excision of burn wound on the lipid peroxidation in selected rat tissues. Bulletin of the Veterinary Institute in Puławy 46: 255–265.

    Google Scholar 

  42. Cakir, B., H. Cevik, G. Contuk, et al. 2005. Leptin ameliorates burn-induced multiple organ damage and modulates postburn immune response in rats. Regulatory Peptides 125: 135–144.

    Article  PubMed  CAS  Google Scholar 

  43. Sener, G., O. Sehirli, A. Velioğlu-Oğünç, et al. 2006. Propylthiouracil (PTU)-induced hypothyroidism alleviates burn-induced multiple organ injury. Burns 32: 728–736.

    Article  PubMed  Google Scholar 

  44. Gao, C., H. Peng, S. Wang, et al. 2012. Effects of ligustrazine on pancreatic and renal damage after scald injury. Burns 38: 102–107.

    Article  PubMed  Google Scholar 

  45. Klaunig, J.E., Z. Wang, X. Pu, et al. 2011. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicology and Applied Pharmacology 254: 86–99.

    Article  PubMed  CAS  Google Scholar 

  46. Bekyarova, G., M. Tzaneva, M. Hristova, et al. 2014. Melatonin protection against burn-induced liver injury. A review. Central European Journal of Medicine 9: 148–158.

    CAS  Google Scholar 

  47. Sener, G., A.O. Sehirli, N. Gedik, et al. 2007. Rosiglitazone, a PPAR-gamma ligand, protects against burn-induced oxidative injury of remote organs. Burns 33: 587–593.

    Article  PubMed  Google Scholar 

  48. Shaw, S., V. Herbert, N. Colman, et al. 1990. Effect of ethanol generated free radicals on gastric intrinsic factor and glutathione. Alcohol 7: 153–157.

    Article  PubMed  CAS  Google Scholar 

  49. Ding, H.Q., B.J. Zhou, L. Liu, et al. 2002. Oxidative stress and metallothionein expression in the liver of rats with severe thermal injury. Burns 28: 215–221.

    Article  PubMed  CAS  Google Scholar 

  50. He, R.R., B. Tsoi, F. Lan, et al. 2011. Antioxidant properties of lutein contribute to the protection against lipopolysaccharide-induced uveitis in mice. Chinese Medicine 31: 6–38.

    CAS  Google Scholar 

  51. Serpeloni, J.M., D. Grotto, A.Z. Mercadante, et al. 2010. Lutein improves antioxidant defense in vivo and protects against DNA damage and chromosome instability induced by cisplatin. Archives of Toxicology 84: 811–822.

    Article  PubMed  CAS  Google Scholar 

  52. Wang, M.C., R. Tsao, S.F. Zhang, et al. 2006. Antioxidant activity, mutagenicity/anti-mutagenicity, and clastogenicity/anti-clastogenicity of lutein from marigold flowers. Food and Chemical Toxicology 44: 1522–1529.

    Article  PubMed  CAS  Google Scholar 

  53. Yeh, F.L., W.L. Lin, and H.D. Shen. 2000. Changes in circulating levels of an anti-inflammatory cytokine interleukin 10 in burned patients. Burns 26: 454–459.

    Article  PubMed  CAS  Google Scholar 

  54. Wang, G., J. Tian, H. Tang, et al. 2002. The role of Kupffer cells on the postburn production of TNFalpha, IL-1beta and IL-6 in severely scalded rats. Zhonghua Shao Shang Za Zhi 18: 282–284.

    PubMed  Google Scholar 

  55. Jin, X.H., K. Ohgami, K. Shiratori, et al. 2006. Inhibitory effects of lutein on endotoxin-induced uveitis in Lewis rats. Investigative Ophthalmology & Visual Science 47: 2562–2568.

    Article  Google Scholar 

  56. Belyarova, G., M. Apostolova, and I. Kozev. 2012. Melatonin protection against burn-induced hepatic injury by down-regulation of nuclear factor kappa B activation. International Journal of Immunopathology and Pharmacology 25: 591–596.

    Article  Google Scholar 

  57. Shen, L., Z. Cui, Y. Lin, et al. 2015. Anti-inflammative effect of glycyrrhizin on rat thermal injury via inhibition of high-mobility group box 1 protein. Burns 41: 372–378.

    Article  PubMed  CAS  Google Scholar 

  58. Bortolin, J.A., H.T. Quintana, C. Tomé Tde, et al. 2016. Burn injury induces histopathological changes and cell proliferation in liver of rats. World Journal of Hepatology 8: 22–30.

    Article  Google Scholar 

  59. Fang, W.H., Y.M. Yao, Z.G. Shi, et al. 2003. The mRNA expression patterns of tumor necrosis factor-alpha and TNFR-I in some vital organs after thermal injury. World Journal of Gastroenterology 9: 1038–1044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Iseri, S.O., F. Dusunceli, C. Erzik, et al. 2010. Oxytocin or social housing alleviates local bum injury in rats. The Journal of Surgical Research 162: 122–131.

    Article  PubMed  CAS  Google Scholar 

  61. Gitto, E., M. Karbownik, R.J. Reiter, et al. 2001. Effects of melatonin treatment in septic newborns. Pediatric Research 50: 756–760.

    Article  PubMed  CAS  Google Scholar 

  62. Sener, G., A.O. Sehirli, H. Satiroglu, et al. 2002. Melatonin improves oxidative organ damage in a rat model of thermal injury. Burns 28: 419–425.

    Article  PubMed  Google Scholar 

  63. Gravante, G., D. Delogu, and G. Sconocchia. 2007. Systemic apoptotic response after thermal burns. Apoptosis 12: 259–270.

    Article  PubMed  CAS  Google Scholar 

  64. Shupp, J.W., T.J. Nasabzadeh, D.S. Rosenthal, et al. 2010. A review of the local pathophysiologic bases of burn wound progression. Journal of Burn Care & Research 31: 849–873.

    Article  Google Scholar 

  65. Ruberg, K., and K. Ollinger. 1998. Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. The American Journal of Pathology 152: 1151–1156.

    Google Scholar 

  66. Zhang, Q.H., J.C. Li, N. Dong, et al. 2013. Burn injury induces gelsolin expression and cleavage in the brain of mice. Neuroscience 228: 60–72.

    Article  PubMed  CAS  Google Scholar 

  67. Guo, S.X., H.L. Zhou, C.L. Huang, et al. 2015. Astaxanthin attenuates early acute kidney injury following severe burns in rats by ameliorating oxidative stress and mitochondrial-related apoptosis. Marine Drugs 13: 2105–2123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Zhang, X.L., J.K. Chai, B.L. Li, et al. 2016. Effect of mitochondrial apoptosis on pulmonary fibrosis in rats with severe scald injury. Zhonghua Yi Xue Za Zhi 96: 1602–1606.

    PubMed  CAS  Google Scholar 

  69. Krishnaswamy, R., S.N. Devaraj, and V.V. Padma. 2010. Lutein protects HT-29 cells against deoxynivalenol-induced oxidative stress and apoptosis: Prevention of NF-kappaB nuclear localization and down regulation of NF-kappaB and cyclo-oxygenase-2 expression. Free Radical Biology & Medicine 49: 50–60.

    Article  CAS  Google Scholar 

  70. Chang, C.J., J.F. Lin, H.H. Chang, et al. 2013. Lutein protects against methotrexate-induced and reactive oxygen species-mediated apoptotic cell injury of IEC-6 cells. PLoSOne 8: e72553.

    Article  CAS  Google Scholar 

  71. Nataraj, J., T. Manivasagam, A.J. Thenmozhi, et al. 2016. Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress. Nutritional Neuroscience 19: 237–246.

    Article  PubMed  CAS  Google Scholar 

  72. Jeschke, M., D.L. Chinkes, C.C. Finnerty, et al. 2008. Pathophysiologic response to severe burn injury. Annals of Surgery 248: 387–401.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Parihar, A., M.S. Parihar, S. Milner, et al. 2008. Oxidative stress and anti-oxidative mobilization in burn injury. Burns 34: 6–17.

    Article  PubMed  Google Scholar 

  74. Bai, X.Z., T. He, J.X. Gao, et al. 2016. Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1. Scientific Reports 6: 32199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ramallo, B.T., E. Lourenço, R.H. Cruz, et al. 2013. A comparative study of pentoxifylline effects in adult and aged rats submitted to lung dysfunction by thermal injury. Acta CirúrgicaBrasileira 28: 154–159.

    Google Scholar 

Download references

Acknowledgements

We thank the consultation of the central laboratory in the Faculty of Veterinary Medicine, Cairo University as we had bench space to work.

Author information

Authors and Affiliations

Authors

Contributions

Huda O. AbuBakr and Samira H. Aljuaydi have participated in performing biochemical analysis of oxidant/anti-oxidant biomarkers and gene expression. Shimaa M. Abou-Zeid has performed the experimental design and participated in biochemical analysis of liver and kidney functions and oxidative stress. Amanallah El-Bahrawy has performed histopathological examination. All authors have contributed in writing this article. All authors critically read and revised the manuscript and approved its submission for publication.

Corresponding author

Correspondence to Huda O. AbuBakr.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Consent for Publication

All authors have reviewed the manuscript and approved its submission for publication.

Ethics Approval and Consent to Participate

Ethics approval and consent to participate this study were approved by the Animal Use and Care Committee at Faculty of Veterinary Medicine, University of Sadat City, Egypt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbuBakr, H.O., Aljuaydi, S.H., Abou-Zeid, S.M. et al. Burn-Induced Multiple Organ Injury and Protective Effect of Lutein in Rats. Inflammation 41, 760–772 (2018). https://doi.org/10.1007/s10753-018-0730-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0730-x

KEY WORDS

Navigation