Skip to main content
Log in

Milonine, a Morphinandienone Alkaloid, Has Anti-Inflammatory and Analgesic Effects by Inhibiting TNF-α and IL-1β Production

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Milonine is a morphinandienone alkaloid from Cissampelos sympodialis Eichl (Menispermaceae), a plant used in Brazil to treat inflammatory disorders. In this study, we evaluated the anti-inflammatory and analgesic activity of milonine (MIL) by using classical experimental models of inflammation and nociception. The results showed that MIL reduced the paw edema formation induced by lipopolysaccharide, prostaglandin E2, and bradykinin, without interfering with the serotonin-induced edema. With respect to the nociception experiments, MIL decreased the exudate into the peritoneum induced by acetic acid, maintaining the tissue morphology. The alkaloid was able to inhibit the peritonitis induced by carrageenan, decreasing mainly the migration of polymorphonuclear cells, without altering the mononuclear cell number, and reduced the levels of TNF-α and IL-1β in the peritoneum. In addition, MIL was able to decrease the frequency of abdominal writhing induced by acetic acid but did not increase the latency time of the animals in the hot plate test. MIL significantly reduced the nociceptive behavior of paw licking induced by formalin only at the second phase of the test. In conclusion, we demonstrate that milonine has anti-inflammatory and anti-nociceptive activities by inhibiting mediators essential for the inflammatory process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454: 428–435.

    Article  CAS  PubMed  Google Scholar 

  2. Nathan, C. 2002. Points of control in inflammation. Nature 420 (6917): 846–852.

    Article  CAS  PubMed  Google Scholar 

  3. Takeuchi, O., and S. Akira. 2010. Pattern recognition and inflammation. Cell 140: 805–820.

    Article  CAS  PubMed  Google Scholar 

  4. Pinho-Ribeiro, F.A., W.A. Verri, and I.M. Chiu. 2017. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunology 38 (1): 5–1.

    Article  CAS  Google Scholar 

  5. Yonathan, M., K. Asres, A. Assefa, and F. Bucar. 2006. In vivo anti-inflammatory and anti-nociceptive activities of Cheilanthes farinose. Journal of Ethnopharmacology 108: 462–470.

    Article  CAS  PubMed  Google Scholar 

  6. Vane, J.R., and R.M. Botting. 1998. Anti-inflammatory drugs and their mechanism of action. Inflammation Research 47 (Suppl 2): S78–S87.

    Article  CAS  PubMed  Google Scholar 

  7. Petrovska, B.B. 2012. Historical review of medicinal plants usage. Pharmacognosy Reviews 6 (11): 1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Menachery, Mary D. 1996. The alkaloids of South American Menispermeaceae. In Alkaloids: Chemical and biological perspectives, ed. S. William Pelletier, 269–302. New York: Pergamon.

    Google Scholar 

  9. Correa, M. 1984. Dicionário de plantas úteis do Brasil e exóticas cultivadas (Dictionary of Brasilian useful plants and exotics cultivated). Rio de Janeiro: Ministério da Agricultura.

    Google Scholar 

  10. Mangueira, L.F., A.S. Braz, D.B. Mangueira, and M.F.F.M. Diniz. 2010. A Ação do Cissampelos Sympodialis Eichl: uma Perspectiva para o Tratamento da Asma. Revista Brasileira de Ciências da Saúde 14 (2): 77–86.

    Article  Google Scholar 

  11. Barbosa-Filho, J.M., N. Agra, and G. Thomas. 1997. Botanical, chemical and pharmacological investigation on Cissampelos species from Paraíba (Brazil). Ciência e Cultura, Journal of Brazilian Association for the Advancement of Science 49 (5–6): 386–394.

    CAS  Google Scholar 

  12. Piuvezam, M.R., L.M.T. Peçanha, J. Alexander, and G. Thomas. 1999. Cissampelos sympodialis Eichl. leaf extract increases the production of IL-10 by concanavalin-A-treated BALB/c spleen cells. Journal of Ethnopharmacology 67 (01): 93–101.

    Article  CAS  PubMed  Google Scholar 

  13. Thomas, G., M. Selak, and P.M. Henson. 1999. Effects of the aqueous fraction of the ethanol extract of the leaves of Cissampelos sympodialis Eichl. in human neutrophils. Phytotherapy Research 13 (1): 9–13.

    Article  CAS  PubMed  Google Scholar 

  14. Alexandre-Moreira, M.S., C.G. Freire-De-Lima, M.N. Trindade, H.C. Castro-Faria-Neto, M.R. Piuvezam, and L.M.T. Peçanha. 2003. Modulation of B lymphocyte function by an aqueous fraction of the ethanol extract of Cissampelos sympodialis Eichl. (Menispermaceae). Brazilian Journal of Medcali Biological Research 36 (11): 199–205.

    Article  CAS  Google Scholar 

  15. Batista-Lima, K.V., R.A. Ribeiro, F.M.P. Balestieri, G. Thomas, and M.R. Piuvezam. 2001. Anti-inflammatory activity of Cissampelos sympodialis EICHL. (Menispermaceae) leaf extract. Acta Farmaceutica Bonaerense 20 (OCT/DEC): 275–279.

    Google Scholar 

  16. De Lira, G.A., et al. 2002. Roraimine: A bisbenzylisoquinoline alkaloid from Cissampelos sympodialis roots. Fitoterapia 73 (4): 356–358.

    Article  PubMed  Google Scholar 

  17. Rocha, J.D., et al. 2010. Inhibitory effect of the alkaloid warifteine purified from Cissampelos sympodialis on B lymphocyte function in vitro and in vivo. Planta Medica 76 (4): 325–330.

    Article  CAS  PubMed  Google Scholar 

  18. Costa, H.F., et al. 2013. Managing murine food allergy with Cissampelos sympodialis Eichl (Menispermaceae) and its alkaloids. International Immunophamacology. 17 (2): 300–308.

    Article  CAS  Google Scholar 

  19. Lima, T.F.A., et al. 2014. Warifteine, an alkaloid purified from Cissampelos sympodialis, inhibits neutrophil migration in vitro and in vivo. Journal of Immunology Research 2014: 1–12.

    Article  Google Scholar 

  20. Costa, H.F., et al. 2007. Warifteine, a bisbenzylisoquinoline alkaloid, decreases immediate allergic and thermal hyperalgesic reactions in sensitized animals. Internacional Immunopharmacology. 8 (4): 519–525.

    Article  Google Scholar 

  21. Bezerra-Santos, C.R., et al. 2006. Anti-allergic properties of Cissampelos sympodialis and its isolated alkaloid warifteine: Inhibition of eosinophilic reaction. International Immunopharmacology 6 (7): 1152–1160.

    Article  CAS  PubMed  Google Scholar 

  22. Freitas, M.R., J. Alencar, and E. Cunha. 1995. Milonine, an 8,14-dihydromorphinandienone alkaloid from leaves of Cissampelos sympodialis. Phytochemistry 40: 1553–1555.

    Article  Google Scholar 

  23. Cavalcante, H.M., et al. 2011. Cardiovascular effects elicited by milonine, a new 8,14-dihydromorphinandienone alkaloid. Basic & Clinical Pharmacology & Toxicology. 108 (2): 122–130.

    Article  CAS  Google Scholar 

  24. Melo, O.S., et al. 2003. Warifteine and milonine, alkaloids isolated from Cissampelos sympodialis Eichl: Cytotoxicity on rat hepatocyte culture and in V79 cells. Toxicology Lettes 142 (1–2): 143–151.

    Article  CAS  Google Scholar 

  25. Campos, M.M., and J.B. Calixto. 1995. Involvement of B1 and B2 receptors in bradykinin-induced rat paw oedema. British Journal of Pharmacology 114 (5): 1005–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naidu, P.S., et al. 2010. Regulation of inflammatory pain by inhibition of fatty acid amide hydrolase. Journal of Pharmacology and Experimental Therapeutics 334 (1): 182–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vasconcelos, R.M.C., F.C. Leite, J.A. Leite, et al. 2012. Synthesis, acute toxicity and anti-inflammatory effect of bornyl salicylate, a salicylic acid derivative. Immunopharmacology and Immunotoxicology 34 (6): 1028–1038.

    Article  CAS  PubMed  Google Scholar 

  28. Santiago, R.F., T.V. Brito, J.M. Dias, et al. 2015. Riparin B, a synthetic compound analogue of riparin, inhibits the systemic inflammatory response and oxidative stress in mice. Inflammation 38 (6): 2203–2215.

    Article  CAS  PubMed  Google Scholar 

  29. Vasconcelos, D.I.B., J.A. Leite, L.T. Carneiro, M.R. Piuvezam, et al. 2011. Anti-inflammatory and antinociceptive activity of ouabain in mice. Mediators of Inflammation 11: 1–12.

    Article  Google Scholar 

  30. Krohn, R.I. 2011. The colorimetric detection and quantification of total protein. Current Protocols in Cell Biology 3: 3H.

    PubMed  Google Scholar 

  31. Loh, T.P., S.M. Leong, and S.K. Sethi. 2013. High concentration of IgM-paraprotein causes over-estimation of serum total protein by certain biuret method. Clinical Chemistry and Laboratory Medicine 59 (9): e205–e207.

    Google Scholar 

  32. Qin, X., X. Jiang, X. Jiang, et al. 2016. Micheliolide inhibits LPS-induced inflammatory response and protects mice from LPS challenge. Scientific Reports 6: 23240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oliveira, M.T.P., T.R.O. Ramalho, L.K.L.P.F. Ferreira, A.L.A. Lima, M.B. Cordeiro, H.F. Costa, L.C. Rodrigues, and M.R. Piuvezam. 2015. Synthesis, toxicity study and anti-inflammatory effect of MHTP, a new tetrahydroisoquinoline alkaloid. Immunopharmacology Immunotoxicology 37 (4): 400–412.

    Article  Google Scholar 

  34. Ramalho, T.R.O., M.T.P. Oliveira, A.L.A. Lima, C.R. Bezerra-Santos, and M.R. Piuvezam. 2015. Gamma-Terpinene modulates acute inflammatory response in mice. Planta Medica 81 (14): 1248–1125.

    Article  CAS  PubMed  Google Scholar 

  35. Bastos, G.N.T., A.R.S. Santos, V.M.M. Ferreira, et al. 2006. Antinociceptive effect of the aqueous extract obtained from roots of Physalis angulata L. on mice. Journal of Ethnopharmacology 103 (2): 241–245.

    Article  CAS  PubMed  Google Scholar 

  36. Park, H.J., D.S. Cha, and H. Jeoh. 2011. Antinociceptive and hypnotic properties of Celastrus orbicularis. Journal of Ethnopharmacology 137: 1240/1244.

    Article  Google Scholar 

  37. Tjølsen, A., O.G. Berge, S. Hunskaar, J.H. Rosland, and J. Hole. 1992. The formalin test: An evaluation of the method. Pain 51 (1): 5–17.

    Article  PubMed  Google Scholar 

  38. Saklani, A., and S.K. Kutty. 2008. Plant-derived compounds in clinical trials. Drug Discovery Today 13 (3–4): 161–171.

    Article  CAS  PubMed  Google Scholar 

  39. Oliveira-Junior, W.M., R.B. Benedito, P.S.C.C. De Menezes, L.T.D. Rodrigues, A.F. Marinho, L.C. De Morais, M.F.F. Diniz, and R.N. De Almeida. 2011. Analgesic effect of hydroalcoholic extract of Cissampelos sympodialis Eichl leaves. Boletim Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas 10: 333–337.

    Google Scholar 

  40. Côrtes, S.F., J.L. Alencar, G. Thomas, et al. 1995. Spasmolytic actions of warifteine, a bisbenzylquinoline alkaloid isolated from the root bark of Cissampelos sympodialis Eichl. Phytotherapy Research 9: 579–583.

    Article  Google Scholar 

  41. Nijland, R., T. Hofland, and J.A.G. van Strijp. 2014. Recognition of LPS by TLR4: Potential for anti-inflammatory therapies. Marine Drugs 12 (7): 4260–4273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ricciotti, E., and G.A. Fitzgerald. 2011. Prostaglandins and inflammation. Arteriosclerosis Thrombosis Vascular Biology 31: 986–1000.

    Article  CAS  Google Scholar 

  43. DiPasquale, G., et al. 1953. Influence of prostaglandins (Pg) E2 and F2 on the inflammatory process. Prostaglandins 3 (6): 741–757.

    Article  Google Scholar 

  44. Liu, L., J. Riese, K. Resch, and V. Kaever. 1994. Impairment of macrophage eicosanoid and nitric oxide production by an alkaloid from Sinomenium acutum. Arzneimittel-Forschung 44: 1223–1226.

    CAS  PubMed  Google Scholar 

  45. Wang, Q., and X.K. Li. 2011. Immunosuppressive and anti-inflammatory activities of sinomenine. Internacional Immunopharmacology 11 (3): 373–376.

    Article  CAS  Google Scholar 

  46. Kaplan, A.P., K. Joseph, and M. Silverberg. 2002. Pathways for bradykinin formation and inflammatory disease. Journal of Allergy Clinical Immunology 109: 195–209.

    Article  CAS  PubMed  Google Scholar 

  47. Maurer, M., et al. 2011. New topics in bradykinin research. Allergy 66: 1397–1406.

    Article  CAS  PubMed  Google Scholar 

  48. Dray, A., and M. Perkins. 1993. Bradykinin and inflammatory pain. Trends Neuroscience 16 (3): 99–104.

    Article  CAS  Google Scholar 

  49. Nagata, K., M. Fujimiya, H. Sugiura, and M. Uehara. 2001. Intracellular localization of serotonin in mast cells of the colon in normal and colitis rats. The Histochemical Journal 33 (9–10): 559–568.

    Article  CAS  PubMed  Google Scholar 

  50. Shajib, M.S., and W.I. Khan. 2015. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiology 213 (3): 561–574.

    Article  CAS  Google Scholar 

  51. Theoharides, T.C., K.D. Alysandratos, A. Angelidou, et al. 2012. Mast cells and inflammation. Biochimica et Biophysica Acta 1822 (1): 21–33.

    Article  CAS  PubMed  Google Scholar 

  52. Kou, J., et al. 2005. Analgesic and anti-inflammatory activities of total extract and individual fractions of Chinese medicinal ants Polyrhachis lamellidens. Biological & Pharmaceutical Bulletin 28 (1): 176–180.

    Article  CAS  Google Scholar 

  53. Ikeda, Y., A. Ueno, H. Naraba, and S. Oh-Ishi. 2001. Involvement of vanilloid receptor VR1 and prostanoids in the acid-induced writhing responses of mice. Life Science 69: 2911–2919.

    Article  CAS  Google Scholar 

  54. Montanher, A.B., S.M. Zucolotto, E.P. Schenkel, and T.S. Fröde. 2006. Evidence of anti-inflammatory effects of Passiflora edulis in an inflammation model. Journal of Ethonopharmacology 109 (2): 281–288.

    Article  Google Scholar 

  55. Loram, L.C., A. Fuller, L.G. Fick, T. Cartmell, S. Poole, and D. Mitchell. 2007. Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. Journal of Pain 8 (2): 127–136.

    Article  CAS  PubMed  Google Scholar 

  56. Figarella-Branger, D., M. Civatte, C. Bartoli, and J. Pellissier. 2003. Cytokines, chemokines, and cell adhesion molecules in inflammatory myopathies. Muscle & Nerve 28 (6): 659–682.

    Article  CAS  Google Scholar 

  57. Wang, Y., Y. Fang, W. Huang, X. Zhou, M. Wang, B. Zhong, and D. Peng. 2005. Effect of sinomenine on cytokine expression of macrophages and synoviocytes in adjuvant arthritis rats. Journal of Ethnopharmacology 98 (1–2): 37–43.

    Article  CAS  PubMed  Google Scholar 

  58. Tracey, K.J. 2002. The inflammatory reflex. Nature 420 (6917): 853–859.

    Article  CAS  PubMed  Google Scholar 

  59. Singh, B.M., G. Neri, P. Bhole, and M. Jaiprakash. 2012. Pain and inflammation: A review. Journal of Pharmaceutical Sciences and Research 3 (12): 4697–4709.

    CAS  Google Scholar 

  60. Collier, H.O., L.C. Dinneen, C.A. Johnson, and C. Schneider. 1968. The abdominal constriction response and its suppression by analgesic drugs in the mouse. British Journal of Pharmacology 32 (2): 295–310.

    CAS  Google Scholar 

  61. Orlandi, L., F.C. Vilela, F.V. Santos-Cecília, et al. 2011. Anti-inflamatory and antinociceptive effects of the stem bark of Byrsonima intermedia A Juss. Journal of Ethnopharmacology 197: 1469–1476.

    Article  Google Scholar 

  62. McNamara, C.R., J. Mandel-Brehm, D.M. Bautista, J. Siemens, et al. 2007. TRPA1 mediates formalin-induced pain. Proceedings of the National Academy of Sciences of the United States of America 104 (33): 13525–13530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chichorro, J.G., B.B. Lorenzetti, and A.R. Zampronio. 2004. Involvement of bradykinin, cytokines, sympathetic amines and prostaglandins in formalin-induced orofacial nociception in rats. British Journal Pharmacology 141 (7): 1175–1184.

    Article  CAS  Google Scholar 

  64. Verri, W.A., Jr., F.T.M.C. Vicentini, M.M. Baracat, S.R. Georgetti, R.D.R. Cardoso, T.M. Cunha, S.H. Ferreira, F.Q. Cunha, M.J.V. Fonseca, and R. Casagrande. 2012. Flavonoids as anti-inflammatory and analgesic drugs: Mechanisms of action and perspectives in the development of pharmaceutical forms. Studies in Natural Products Chemistry 36: 297–322.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by INCT para Controle do Câncer and CAPES/Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia Regina Piuvezam.

Ethics declarations

The experiments were conducted according to the Ethics Committee for the Use of Animals (CEUA/Federal University of Paraiba/João Pessoa/PB/Brazil) under the protocol number 003/2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.R., Alves, A.F., Cavalcante-Silva, L.H.A. et al. Milonine, a Morphinandienone Alkaloid, Has Anti-Inflammatory and Analgesic Effects by Inhibiting TNF-α and IL-1β Production. Inflammation 40, 2074–2085 (2017). https://doi.org/10.1007/s10753-017-0647-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0647-9

KEY WORDS

Navigation