Skip to main content
Log in

Theoretical and Experimental in vivo Study of Antioxidant Activity of Crocin in Order to Propose Novel Derivatives with Higher Antioxidant Activity and Their Delivery via Nanotubes and Nanocones

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

In this study, the antioxidant activity of crocin via experimental and theoretical methods was investigated. In order to induce oxidative stress, 30-min renal ischemia and 24-h reperfusion were used in male Wistar rats. Oxidative stress was assessed by measuring tissue malondialdehyde (MDA) and ferric reducing/antioxidant power (FRAP). The results showed that following ischemia/reperfusion, the level of MDA was increased and FRAP decreased. Both of these changes were alleviated by crocin administration. The bond dissociation enthalpy and ionization potential values as enthalpies of mechanism of antioxidant activity of crocin were calculated by density functional theory method. According to obtained results, the novel structures of crocin with higher antioxidant activity for synthesis were proposed. Results indicated that NH2, OMe, and F substituents can improve the antioxidant activity of crocin. The crocin delivery via carbon and boron nitride nanotubes and nanocones was investigated. The results confirm that the calculated adsorption and free Gibbs energies of crocin on the surface of studied nanostructures were negative meaningfully, so these processes were exothermic and experimentally possible from the energetic viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PBS:

phosphate buffer saline

MDA:

malondialdehyde

FRAP:

ferric reducing/antioxidant power

DFT:

density functional theory

PW91:

Perdew–Wang 91

HOMO:

highest occupied molecular orbital

LUMO:

lowest unoccupied molecular orbital

HLG:

HOMO–LUMO gap

CNC:

carbon nanocone

BNNC:

boron nitride nanocone

CNT:

carbon nanotube

BNNT:

boron nitride nanotube

BDE:

bond dissociation enthalpy

IP:

ionization potential

HAT:

hydrogen atom transfer

SET:

single electron transfer

References

  1. Karrer, P., F. Benz, R. Morf, and H. Raudnitz. 1932. Helvetica Chimica Acta 15: 1399.

    Article  CAS  Google Scholar 

  2. Isler, O. 1979. Pure and Applied Chemistry 51: 447–462.

    Article  CAS  Google Scholar 

  3. Hosseinzadeh, H., T. Ziaee, and A. Sadeghi. 2008. Phytomedicine 15: 491–495.

    Article  CAS  PubMed  Google Scholar 

  4. Laabich, A., and G.P. Vissvesvaran. 2006. Investigative Ophthalmology & Visual Science 47: 3156–3163.

    Article  Google Scholar 

  5. Papandreou, M.A., C.D. Kanakis, and M. Margarity. 2006. Journal of Agricultural and Food Chemistry 54: 8762–8768.

    Article  CAS  PubMed  Google Scholar 

  6. Shinji, S., T. Ochiai, H. Shimeno, H. Saito, and K. Abe. 2007. Journal of Natural Medicines 61: 102–111.

    Article  Google Scholar 

  7. Edge, R., D.J. McGarvey, and T.G. Truscott. 1997. Journal of Photochemistry and Photobiology. B 41: 189–200.

    Article  CAS  Google Scholar 

  8. Woodall, A.A., S.W.M. Lee, and R.J. Weesie. 1997. Biochimica et Biophysica Acta 1336: 33–42.

    Article  CAS  PubMed  Google Scholar 

  9. Guo, J., Y. Luo, and F. Himo. 2002. Chemical Physics Letters 366: 73–81.

    Article  CAS  Google Scholar 

  10. Chen, Y., H. Zhang, C. Zhao, L. Cai, Y. Liu, and L. Jia. 2008. Food Chemistry 109: 484–492.

    Article  CAS  Google Scholar 

  11. Najafi, M., M. Najafi, and H. Najafi. 2012. Bulletin of the Korean Chemical Society 33: 3343–3348.

    Article  CAS  Google Scholar 

  12. Najafi, M., M. Najafi, and H. Najafi. 2012. Bulletin of the Korean Chemical Society 33: 3607–3617.

    Article  CAS  Google Scholar 

  13. Iijima, S. 1991. Nature 354: 56–58.

    Article  CAS  Google Scholar 

  14. Kong, J., N.R. Franklin, C. Zhou, and M.G. Chapline. 2000. Science 287: 622–625.

    Article  CAS  PubMed  Google Scholar 

  15. Collins, P.G., K. Bradley, and M. Ishigami. 2000. A. Science 287: 1801–1804.

    CAS  PubMed  Google Scholar 

  16. Snow, E.S., F.K. Perkins, and J.A. Robinson. 2006. Chemical Society Reviews 35: 790–798.

    Article  CAS  PubMed  Google Scholar 

  17. Kauffman, D.R., and A. Star. 2008. Ang. Chemistry International 47: 6550–6570.

    Article  CAS  Google Scholar 

  18. Russo, G.L., M. Russo, and I. Castellano. 2014. Marine Drugs 12 (7): 4069–4085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sieliwoniuk, E.N., and J. Malejko. Food Chemistry 176: 175–183.

  20. Veloso, M.V., A.G. Souza Filho, and Filho Mendes. Journal Chemistry Physics Letters: 430–471.

  21. Meng, L., X. Zhang, Q. Lu, Z. Fei, and P.J. Dyson. 2012. Biomaterials 33: 1689–1698.

    Article  CAS  PubMed  Google Scholar 

  22. Cuevas-Glory, L., and E. Ortiz-Vázquez. 2015. Mexico. Food Chemistry 166: 17–22.

    Article  PubMed  Google Scholar 

  23. Mahmoudzadeh, L., H. Najafi, S. Changizi-Ashtiyani, and Z. Mohamadi Yarijani. 2016. Nephrology.

  24. Najafi, H., M.R. Firouzifar, O. Shafaat, S. Changizi Ashtiyani, and N. Hosseini. 2014. Iranian Journal of Kidney Diseases 8: 293–298.

    Google Scholar 

  25. Najafi, H., S.M. Owji, E. Kamali-Sarvestani, and S.M. Shid Moosavi. 2016. Experimental Physiology 101 (7): 913–931.

    Article  CAS  PubMed  Google Scholar 

  26. Máté, S., and J. Nie. 2010. Surface Science 604: 654.

    Article  Google Scholar 

  27. Oubal, M., S. Picaud, M. Rayez, and J. Rayez. 2010. Surface Science 604: 1666.

    Article  CAS  Google Scholar 

  28. Ferro, Y., A. Allouche, F. Marinelli, and C. Bros. 2004. Sets Surface Science 559: 158.

    Article  CAS  Google Scholar 

  29. Grimme, S. 2006. Journal of Computational Chemistry 27: 1787.

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt, M., et al. 1993. Journal of Computational Chemistry 14: 1347.

    Article  CAS  Google Scholar 

  31. Najafi, M., M. Najafi, and H. Najafi. 2013. Journal of Theoretical and Computational Chemistry 12: 1250116.

    Article  Google Scholar 

  32. Najafi, M., M. Najafi, and H. Najafi. 2013. Bulletin of the Chemical Society of Japan 86: 497–509.

    Article  CAS  Google Scholar 

  33. Najafi, M., M. Najafi, and H. Najafi. 2013. Computational & Theoretical Chemistry 999: 34–42.

    Article  Google Scholar 

  34. Najafi, M., M. Najafi, and H. Najafi. 2012. Canadian Journal of Chemistry 90: 915–926.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The experimental results described in this paper were part of research project No 91077. The authors would like to thank the Vice-Chancellery for research affairs of Kermanshah University of Medical Sciences for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Najafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, H., Yarijani, Z.M. & Najafi, M. Theoretical and Experimental in vivo Study of Antioxidant Activity of Crocin in Order to Propose Novel Derivatives with Higher Antioxidant Activity and Their Delivery via Nanotubes and Nanocones. Inflammation 40, 1794–1802 (2017). https://doi.org/10.1007/s10753-017-0623-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0623-4

KEY WORDS

Navigation