Skip to main content
Log in

Lysophosphatidic Acid Protects Against Endotoxin-Induced Acute Kidney Injury

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Septic shock is the most common cause of acute kidney injury (AKI), but the underlying mechanisms remain unclear and no targeted therapies exist. Lysophosphatidic acid (LPA) is a bioactive lipid which in vivo administration was reported to mitigate inflammation and injuries caused by bacterial endotoxemia in the liver and lung. The objective of the present study was to determine whether LPA can protect against sepsis-associated AKI. C57BL/6 mice were treated with LPA 18:1 (5 mg/kg, i.p.) 1 h before being injected with the endotoxin lipopolysaccharide (LPS), and AKI was evaluated after 24 h. LPA significantly decreased the elevation of plasma urea and creatinine caused by LPS. In the kidney, LPA pretreatment significantly reduced the upregulation of inflammatory cytokines (IL-6, TNFα, monocyte chemoattractant protein-1 (MCP-1)), and completely prevented downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha and upregulation of heme oxygenase-1 caused by LPS. LPA also prevented LPS-mediated alterations of the renal mitochondrial ultrastructure. In vitro pretreatment with LPA 18:1 significantly attenuated LPS-induced upregulation of the inflammatory cytokines (TNFα and MCP-1) in RAW264 macrophages. Moreover, in vivo LPS treatment lowered urinary LPA concentration and reduced LPA anabolic enzymes (autotaxin and acylglycerol kinase), and increased the LPA catalytic enzyme (lipid phosphate phosphatase 2) expression in the kidney cortex. In conclusion, exogenous LPA exerted a protective action against renal inflammation and injuries caused by bacterial endotoxemia. Moreover, LPS reduces the renal production of LPA suggesting that sepsis-associated AKI could be mediated, at least in part, by alleviation of the protective action of endogenous LPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aikawa, S., T. Hashimoto, K. Kano, and J. Aoki. 2015. Lysophosphatidic acid as a lipid mediator with multiple biological actions. Journal of Biochemistry 157 (2): 81–89. doi:10.1093/jb/mvu077.

    Article  CAS  PubMed  Google Scholar 

  2. Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369 (9): 840–851. doi:10.1056/NEJMra1208623.

    Article  CAS  PubMed  Google Scholar 

  3. Cholia, R.P., H. Nayyar, R. Kumar, and A.K. Mantha. 2015. Understanding the Multifaceted Role of Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) and its Altered Behaviour in Human Diseases. Current Molecular Medicine 15 (10): 932–943.

    Article  CAS  PubMed  Google Scholar 

  4. de Vries, B., R.A. Matthijsen, A.A. van Bijnen, T.G. Wolfs, and W.A. Buurman. 2003. Lysophosphatidic acid prevents renal ischemia-reperfusion injury by inhibition of apoptosis and complement activation. The American Journal of Pathology 163 (1): 47–56. doi:10.1016/S0002-9440(10)63629-2.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dellepiane, S., M. Marengo, and V. Cantaluppi. 2016. Detrimental cross-talk between sepsis and acute kidney injury: new pathogenic mechanisms, early biomarkers and targeted therapies. Critical Care 20: 61. doi:10.1186/s13054-016-1219-3.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dohi, T., K. Miyauchi, R. Ohkawa, K. Nakamura, T. Kishimoto, T. Miyazaki, A. Nishino, et al. 2012. Increased circulating plasma lysophosphatidic acid in patients with acute coronary syndrome. Clinica Chimica Acta 413 (1–2): 207–212. doi:10.1016/j.cca.2011.09.027.

    Article  CAS  Google Scholar 

  7. Dohi, T., K. Miyauchi, R. Ohkawa, K. Nakamura, M. Kurano, T. Kishimoto, N. Yanagisawa, et al. 2013. Increased lysophosphatidic acid levels in culprit coronary arteries of patients with acute coronary syndrome. Atherosclerosis 229 (1): 192–197. doi:10.1016/j.atherosclerosis.2013.03.038.

    Article  CAS  PubMed  Google Scholar 

  8. Fan, H., B. Zingarelli, V. Harris, G.E. Tempel, P.V. Halushka, and J.A. Cook. 2008. Lysophosphatidic acid inhibits bacterial endotoxin-induced pro-inflammatory response: potential anti-inflammatory signaling pathways. Molecular Medicine 14 (7–8): 422–428. doi:10.2119/2007-00106.Fan.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Furuichi, K., T. Wada, Y. Iwata, K. Kitagawa, K. Kobayashi, H. Hashimoto, Y. Ishiwata, et al. 2003. CCR2 signaling contributes to ischemia-reperfusion injury in kidney. Journal of the American Society of Nephrology 14 (10): 2503–2515.

    Article  PubMed  Google Scholar 

  10. Gao, J., D. Zhang, X. Yang, Y. Zhang, P. Li, and X. Su. 2011. Lysophosphatidic acid and lovastatin might protect kidney in renal I/R injury by downregulating MCP-1 in rat. Renal Failure 33 (8): 805–810. doi:10.3109/0886022X.2011.601829.

    Article  CAS  PubMed  Google Scholar 

  11. Gomez, H., C. Ince, D. De Backer, P. Pickkers, D. Payen, J. Hotchkiss, and J.A. Kellum. 2014. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 41 (1): 3–11. doi:10.1097/SHK.0000000000000052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gomez, H., and J.A. Kellum. 2016. Sepsis-induced acute kidney injury. Current Opinion in Critical Care 22 (6): 546–553. doi:10.1097/MCC.0000000000000356.

    Article  PubMed  Google Scholar 

  13. Han, M., Y. Li, M. Liu, Y. Li, and B. Cong. 2012. Renal neutrophil gelatinase associated lipocalin expression in lipopolysaccharide-induced acute kidney injury in the rat. BMC Nephrology 13: 25. doi:10.1186/1471-2369-13-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He, D., Y. Su, P.V. Usatyuk, E.W. Spannhake, P. Kogut, J. Solway, V. Natarajan, and Y. Zhao. 2009. Lysophosphatidic acid enhances pulmonary epithelial barrier integrity and protects endotoxin-induced epithelial barrier disruption and lung injury. The Journal of Biological Chemistry 284 (36): 24123–24132. doi:10.1074/jbc.M109.007393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iglesias, J., V.E. Abernethy, Z. Wang, W. Lieberthal, J.S. Koh, and J.S. Levine. 1999. Albumin is a major serum survival factor for renal tubular cells and macrophages through scavenging of ROS. The American Journal of Physiology 277 (5 Pt 2): F711–F722.

    CAS  PubMed  Google Scholar 

  16. Jo, S.K., S.A. Sung, W.Y. Cho, K.J. Go, and H.K. Kim. 2006. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrology, Dialysis, Transplantation 21 (5): 1231–1239. doi:10.1093/ndt/gfk047.

    Article  CAS  PubMed  Google Scholar 

  17. Kurano, M., A. Suzuki, A. Inoue, Y. Tokuhara, K. Kano, H. Matsumoto, K. Igarashi, et al. 2015. Possible involvement of minor lysophospholipids in the increase in plasma lysophosphatidic acid in acute coronary syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology 35 (2): 463–470. doi:10.1161/ATVBAHA.114.304748.

    Article  CAS  PubMed  Google Scholar 

  18. Li, Z.G., Z.C. Yu, D.Z. Wang, W.P. Ju, X. Zhan, Q.Z. Wu, X.J. Wu, H.M. Cong, and H.H. Man. 2008. Influence of acetylsalicylate on plasma lysophosphatidic acid level in patients with ischemic cerebral vascular diseases. Neurological Research 30 (4): 366–369. doi:10.1179/174313208X300369.

    Article  CAS  PubMed  Google Scholar 

  19. Makris, K., and L. Spanou. 2016. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. Clinical Biochemist Reviews 37 (2): 85–98.

    Google Scholar 

  20. Minnear, F.L., S. Patil, D. Bell, J.P. Gainor, and C.A. Morton. 2001. Platelet lipid(s) bound to albumin increases endothelial electrical resistance: mimicked by LPA. American Journal of Physiology. Lung Cellular and Molecular Physiology 281 (6): L1337–L1344.

    CAS  PubMed  Google Scholar 

  21. Mirzoyan, K., A. Baiotto, A. Dupuy, D. Marsal, C. Denis, C. Vinel, P. Sicard, et al. 2016. Increased urinary lysophosphatidic acid in mouse with subtotal nephrectomy: potential involvement in chronic kidney disease. Journal of Physiology and Biochemistry 72 (4): 803–812. doi:10.1007/s13105-016-0518-0.

    Article  CAS  PubMed  Google Scholar 

  22. Mouratis, M.A., C. Magkrioti, N. Oikonomou, A. Katsifa, G.D. Prestwich, E. Kaffe, and V. Aidinis. 2015. Autotaxin and Endotoxin-Induced Acute Lung Injury. PloS One 10 (7): e0133619. doi:10.1371/journal.pone.0133619.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Murch, O., M. Collin, and C. Thiemermann. 2007. Lysophosphatidic acid reduces the organ injury caused by endotoxemia-a role for G-protein-coupled receptors and peroxisome proliferator-activated receptor-gamma. Shock 27 (1): 48–54. doi:10.1097/01.shk.0000235086.63723.7e.

    Article  CAS  PubMed  Google Scholar 

  24. Murugan, R., V. Karajala-Subramanyam, M. Lee, S. Yende, L. Kong, M. Carter, D.C. Angus, J.A. Kellum, and Genetic, and Investigators Inflammatory Markers of Sepsis. 2010. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney International 77 (6): 527–535. doi:10.1038/ki.2009.502.

    Article  CAS  PubMed  Google Scholar 

  25. Ohba, Y., T. Sakuragi, E. Kage-Nakadai, N.H. Tomioka, N. Kono, R. Imae, A. Inoue, et al. 2013. Mitochondria-type GPAT is required for mitochondrial fusion. The EMBO Journal 32 (9): 1265–1279. doi:10.1038/emboj.2013.77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okusa, M.D., H. Ye, L. Huang, L. Sigismund, T. Macdonald, and K.R. Lynch. 2003. Selective blockade of lysophosphatidic acid LPA3 receptors reduces murine renal ischemia-reperfusion injury. American Journal of Physiology. Renal Physiology 285 (3): F565–F574. doi:10.1152/ajprenal.00023.2003.

    Article  PubMed  Google Scholar 

  27. Pasquali-Ronchetti, I., J.W. Greenawalt, and E. Carafoli. 1969. On the nature of the dense matrix granules of normal mitochondria. The Journal of Cell Biology 40 (2): 565–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Raschke, W.C., S. Baird, P. Ralph, and I. Nakoinz. 1978. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 15 (1): 261–267.

    Article  CAS  PubMed  Google Scholar 

  29. Riaz, A., Y. Huang, and S. Johansson. 2016. G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling. International Journal of Molecular Sciences 17 (2): 215. doi:10.3390/ijms17020215.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schrier, R.W., and W. Wang. 2004. Acute renal failure and sepsis. The New England Journal of Medicine 351 (2): 159–169. doi:10.1056/NEJMra032401.

    Article  CAS  PubMed  Google Scholar 

  31. Tran, M., and S.M. Parikh. 2014. Mitochondrial biogenesis in the acutely injured kidney. Nephron. Clinical Practice 127 (1–4): 42–45. doi:10.1159/000363715.

    Article  CAS  PubMed  Google Scholar 

  32. Tran, M.T., Z.K. Zsengeller, A.H. Berg, E.V. Khankin, M.K. Bhasin, W. Kim, C.B. Clish, et al. 2016. PGC1alpha drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531 (7595): 528–532. doi:10.1038/nature17184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Treguer, K., R. Dusaulcy, S. Gres, E. Wanecq, P. Valet, and J.S. Saulnier-Blache. 2013. Influence of secreted factors from human adipose tissue on glucose utilization and proinflammatory reaction. Journal of Physiology and Biochemistry. doi:10.1007/s13105-013-0238-7.

  34. Tsutsumi, T., M. Adachi, M. Nikawadori, J. Morishige, and A. Tokumura. 2011. Presence of bioactive lysophosphatidic acid in renal effluent of rats with unilateral ureteral obstruction. Life Sciences 89 (5–6): 195–203. doi:10.1016/j.lfs.2011.06.001.

    Article  CAS  PubMed  Google Scholar 

  35. Uchino, S., J.A. Kellum, R. Bellomo, G.S. Doig, H. Morimatsu, S. Morgera, M. Schetz, et al. 2005. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294 (7): 813–818. doi:10.1001/jama.294.7.813.

    Article  CAS  PubMed  Google Scholar 

  36. Wu, L., M.M. Tiwari, K.J. Messer, J.H. Holthoff, N. Gokden, R.W. Brock, and P.R. Mayeux. 2007. Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice. American Journal of Physiology. Renal Physiology 292 (1): F261–F268. doi:10.1152/ajprenal.00263.2006.

    Article  CAS  PubMed  Google Scholar 

  37. Yin, F., and M.A. Watsky. 2005. LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance. Investigative Ophthalmology & Visual Science 46 (6): 1927–1933. doi:10.1167/iovs.04-1256.

    Article  CAS  Google Scholar 

  38. Zarbock, A., H. Gomez, and J.A. Kellum. 2014. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. Current Opinion in Critical Care 20 (6): 588–595. doi:10.1097/MCC.0000000000000153.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhao, J., D. He, E. Berdyshev, M. Zhong, R. Salgia, A.J. Morris, S.S. Smyth, V. Natarajan, and Y. Zhao. 2011. Autotaxin induces lung epithelial cell migration through lysoPLD activity-dependent and -independent pathways. The Biochemical Journal 439 (1): 45–55. doi:10.1042/BJ20110274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, J., D. He, Y. Su, E. Berdyshev, J. Chun, V. Natarajan, and Y. Zhao. 2011. Lysophosphatidic acid receptor 1 modulates lipopolysaccharide-induced inflammation in alveolar epithelial cells and murine lungs. American Journal of Physiology. Lung Cellular and Molecular Physiology 301 (4): L547–L556. doi:10.1152/ajplung.00058.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from INSERM. Koryun Mirzoyan is supported by a Ph.D. grant from Europe (ERASMUS MUNDUS, MEDEA). Justine Bertrand-Michel and Aude Dupuy from the Toulouse’s Lipidomic Core Facility (www.metatoul.fr) are gratefully acknowledged for carrying out LC-MS/MS quantification of the LPA in urine and plasma. We also thank Alexandre Lucas from the Protein Cellular Analysis facility (www.i2mc.inserm.fr/index.php/en/technical-facilities/protein-cellular-analysis-pca) for the quantification of cytokines. All authors participated in the conception and design or analysis and interpretation of the data, contributed to drafting and revising the manuscript, and gave final approval of the version to be published.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joost P. Schanstra or Jean-Sébastien Saulnier-Blache.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzoyan, K., Denis, C., Casemayou, A. et al. Lysophosphatidic Acid Protects Against Endotoxin-Induced Acute Kidney Injury. Inflammation 40, 1707–1716 (2017). https://doi.org/10.1007/s10753-017-0612-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0612-7

KEY WORDS

Navigation