Skip to main content

Advertisement

Log in

N-(2-Hydroxyphenyl)acetamide: a Novel Suppressor of RANK/RANKL Pathway in Collagen-Induced Arthritis Model in Rats

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

RANKL and RANK are potential contributors of inflammatory cascade in human and animal model of arthritis. The current study aims to investigate the effect of N-(2-hydroxyphenyl)acetamide (NA-2) on regulation of RANKL pathway in collagen-induced arthritis (CIA) model in rats. CIA was induced using bovine type II collagen in female Wistar rats. The clinical parameters, level of pro-inflammatory and oxidative stress markers were measured to determine the progression of the disease. The mRNA level of RANKL and RANK and downstream mediators of inflammation i.e. c-fos, c-jun, NF-κB and Akt were analysed in spleen tissue using real-time PCR. Immunohistochemical analysis of iNOS, pAkt and c-Fos was also done in spleen tissue. Treatment with NA-2 and indomethacin showed increase in body weight and significant reduction in paw volume and arthritic score (p < 0.0001). Marked reduction in the level of oxidative stress markers, NO, PO and GSH (p < 0.0001), and pro-inflammatory markers, IL-1β (p < 0.0001) and TNF-α (p < 0.01), was also observed. Likewise, NA-2 and indomethacin treatment also significantly suppressed the mRNA expression of RANKL, RANK, c-fos, c-jun, NF-κB (p < 0.0001) and Akt (p < 0.01) and protein expression of iNOS, pAkt and c-Fos (p < 0.0001) compared to the arthritic control group. Our findings suggest that NA-2 is an antiarthritic agent acting in a pleiotropic manner in CIA rats by not only reducing the clinical signs of arthritis, inflammatory cytokines and free radical production but also attenuating the RANK/RANKL signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Picerno, V., F. Ferro, A. Adinolfi, E. Valentini, C. Tani, and A. Alunno. 2015. One year in review: The pathogenesis of rheumatoid arthritis. Clinical and Experimental Rheumatology 33: 551–558.

    PubMed  Google Scholar 

  2. McInnes, I.B., and G. Schett. 2011. The pathogenesis of rheumatoid arthritis. New England Journal of Medicine 365: 2205–2219.

    Article  CAS  PubMed  Google Scholar 

  3. MacGregor, A.J., H. Snieder, A.S. Rigby, M. Koskenvuo, J. Kaprio, K. Aho, and A.J. Silman. 2000. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis and Rheumatism 43: 30.

    Article  CAS  PubMed  Google Scholar 

  4. van den Berg, W.B. 2000. Anti-cytokine therapy in chronic destructive arthritis. Arthritis Research & Therapy. doi:10.1186/ar136.

    Google Scholar 

  5. Freeman, B.A., and J.D. Crapo. 1982. Biology of disease: Free radicals and tissue injury. Laboratory investigation; a journal of technical methods and pathology 47: 412–426.

    CAS  PubMed  Google Scholar 

  6. Cadenas, E. 1997. Basic mechanisms of antioxidant activity. BioFactors 6: 391–397.

    Article  CAS  PubMed  Google Scholar 

  7. Karsenty, G. 2003. The complexities of skeletal biology. Nature 423: 316–318.

    Article  CAS  PubMed  Google Scholar 

  8. Woolf, A. 1991. Osteoporosis in rheumatoid arthritis—The clinical viewpoint. Rheumatology 30: 82–84.

    Article  CAS  Google Scholar 

  9. Suda, T., N. Takahashi, N. Udagawa, E. Jimi, M.T. Gillespie, and T.J. Martin. 1999. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrine Reviews 20: 345–357.

    Article  CAS  PubMed  Google Scholar 

  10. Theill, L.E., W.J. Boyle, and J.M. Penninger. 2002. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annual Review of Immunology 20: 795–823.

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka, S. 2013. Regulation of bone destruction in rheumatoid arthritis through RANKL-RANK pathways. World Journal of Orthopedics 4: 1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Takahashi, N., T. Akatsu, N. Udagawa, T. Sasaki, A. Yamaguchi, J.M. Moseley, T.J. Martin, and T. Suda. 1988. Osteoblastic cells are involved in osteoclast formation. Endocrinology 123: 2600–2602.

    Article  CAS  PubMed  Google Scholar 

  13. Lewiecki, E.M. 2009. Denosumab for joints and bones. Current Rheumatology Reports 11: 196–201.

    Article  CAS  PubMed  Google Scholar 

  14. Sharp, J.T., W. Tsuji, P. Ory, C. Harper‐Barek, H. Wang, and R. Newmark. 2010. Denosumab prevents metacarpal shaft cortical bone loss in patients with erosive rheumatoid arthritis. Arthritis Care & Research 62: 537–544.

    Article  Google Scholar 

  15. Schett, G., S. Hayer, J. Zwerina, K. Redlich, and J.S. Smolen. 2005. Mechanisms of disease: The link between RANKL and arthritic bone disease. Nature Clinical Practice Rheumatology 1: 47–54.

    Article  CAS  PubMed  Google Scholar 

  16. Kong, Y.-Y., U. Feige, I. Sarosi, B. Bolon, A. Tafuri, S. Morony, C. Capparelli, J. Li, R. Elliott, and S. McCabe. 1999. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402: 43–47.

    Google Scholar 

  17. Aletaha, D., T. Neogi, A.J. Silman, J. Funovits, D.T. Felson, C.O. Bingham, N.S. Birnbaum, G.R. Burmester, V.P. Bykerk, and M.D. Cohen. 2010. 2010 rheumatoid arthritis classification criteria: An American College of Rheumatology/European league against Rheumatism collaborative initiative. Arthritis and Rheumatism 62: 2569–2581.

    Article  PubMed  Google Scholar 

  18. Jawed, H., S. Jamall, S.U.A. Shah, K. Perveen, F. Hanif, and S.U. Simjee. 2014a. N-(2-hydroxy phenyl) acetamide produces profound inhibition of c-Fos protein and mRNA expression in the brain of adjuvant-induced arthritic rats. Molecular and Cellular Biochemistry 387: 81–90.

    Article  CAS  PubMed  Google Scholar 

  19. Jawed, H., S.U.A. Shah, S. Jamall, and S.U. Simjee. 2010. N-(2-hydroxy phenyl) acetamide inhibits inflammation-related cytokines and ROS in adjuvant-induced arthritic (AIA) rats. International Immunopharmacology 10: 900–905.

    Article  CAS  PubMed  Google Scholar 

  20. Perveen, K., F. Hanif, H. Jawed, S. Jamall, and S.U. Simjee. 2014. N-(2-hydroxy phenyl) acetamide: A novel suppressor of toll-like receptors (TLR-2 and TLR-4) in adjuvant-induced arthritic rats. Molecular and Cellular Biochemistry 394: 67–75.

    Article  CAS  PubMed  Google Scholar 

  21. Ghirnikar, R.S., Y.L. Lee, and L.F. Eng. 1998. Inflammation in traumatic brain injury: Role of cytokines and chemokines. Neurochemical Research 23: 329–340.

    Article  CAS  PubMed  Google Scholar 

  22. McHugh, J.M., and W.B. McHugh. 2000. Pain: Neuroanatomy, chemical mediators, and clinical implications. AACN Advanced Critical Care 11: 168–178.

    CAS  Google Scholar 

  23. El-barbary, A.M., M.A.A. Khalek, A.M. Elsalawy, and S.M. Hazaa. 2011. Assessment of lipid peroxidation and antioxidant status in rheumatoid arthritis and osteoarthritis patients. The Egyptian Rheumatologist 33: 179–185.

    Article  CAS  Google Scholar 

  24. Hrabák, A., V. Vercruysse, I.L. Kahán, and B. Vray. 2001. Indomethacin prevents the induction of inducible nitric oxide synthase in murine peritoneal macrophages and decreases their nitric oxide production. Life Sciences 68: 1923–1930.

    Article  PubMed  Google Scholar 

  25. Joosten, L.A., M.M. Helsen, T. Saxne, F.A. van de Loo, D. Heinegård, and W.B. van den Berg. 1999. IL-1αβ blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-α blockade only ameliorates joint inflammation. The Journal of Immunology 163: 5049–5055.

    CAS  PubMed  Google Scholar 

  26. McNeill, E., M.J. Crabtree, N. Sahgal, J. Patel, S. Chuaiphichai, A.J. Iqbal, A.B. Hale, D.R. Greaves, and K.M. Channon. 2015. Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radical Biology and Medicine 79: 206–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cannon, G.W., S.J. Openshaw, J.B. Hibbs, J.R. Hoidal, T.P. Huecksteadt, and M.M. Griffiths. 1996. Nitric oxide production during adjuvant‐induced and collagen‐induced arthritis. Arthritis and Rheumatism 39: 1677–1684.

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka, S., T. Matsui, T. Murakami, T. Ishizuka, M. Sugiura, K. Kawashima, and T. Sugita. 1998. Immunological abnormality associated with the augmented nitric oxide synthesis in adjuvant-induced arthritis. International Journal of Immunopharmacology 20: 71–84.

    Article  CAS  PubMed  Google Scholar 

  29. Tsubaki, M., T. Takeda, T. Kino, T. Itoh, M. Imano, G. Tanabe, O. Muraoka, T. Satou, and S. Nishida. 2015. Mangiferin suppresses CIA by suppressing the expression of TNF-α, IL-6, IL-1β, and RANKL through inhibiting the activation of NF-κB and ERK1/2. American Journal of Translational Research 7: 1371–1381.

    PubMed  PubMed Central  Google Scholar 

  30. Wei, Z.-F., B. Tong, Y.-F. Xia, Q. Lu, G.-X. Chou, Z.-T. Wang, and Y. Dai. 2013. Norisoboldine suppresses osteoclast differentiation through preventing the accumulation of TRAF6-TAK1 complexes and activation of MAPKs/NF-κB/c-Fos/NFATc1 pathways. PloS One 8: e59171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brown, K.D., E. Claudio, and U. Siebenlist. 2008. The roles of the classical and alternative nuclear factor-kappaB pathways: Potential implications for autoimmunity and rheumatoid arthritis. Arthritis Research & Therapy. doi:10.1186/ar2457.

    Google Scholar 

  32. Tsao, P.W., T. Suzuki, R. Totsuka, T. Murata, T. Takagi, Y. Ohmachi, H. Fujimura, and I. Takata. 1997. The effect of dexamethasone on the expression of activated NF-κB in adjuvant arthritis. Clinical Immunology and Immunopathology 83: 173–178.

    Article  CAS  PubMed  Google Scholar 

  33. Miagkov, A.V., D.V. Kovalenko, C.E. Brown, J.R. Didsbury, J.P. Cogswell, S.A. Stimpson, A.S. Baldwin, and S.S. Makarov. 1998. NF-κB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proceedings of the National Academy of Sciences 95: 13859–13864.

    Article  CAS  Google Scholar 

  34. Tak, P.P., and G.S. Firestein. 2001. NF-κB: A key role in inflammatory diseases. The Journal of Clinical Investigation 107: 7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Teitelbaum, S.L. 2004. RANKing c-Jun in osteoclast development. The Journal of Clinical Investigation 114: 463–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takayanagi, H. 2005. Mechanistic insight into osteoclast differentiation in osteoimmunology. Journal of Molecular Medicine 83: 170–179.

    Article  CAS  PubMed  Google Scholar 

  37. Lee, J.-H., H. Jin, H.-E. Shim, H.-N. Kim, H. Ha, and Z.H. Lee. 2010. Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-κB signal. Molecular Pharmacology 77: 17–25.

    Article  CAS  PubMed  Google Scholar 

  38. Ikeda, F., R. Nishimura, T. Matsubara, S. Tanaka, J.-i. Inoue, S.V. Reddy, K. Hata, K. Yamashita, T. Hiraga, and T. Watanabe. 2004. Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. The Journal of Clinical Investigation 114: 475–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, L., M. Yu, J. Deng, X. Lv, J. Liu, Y. Xiao, W. Yang, Y. Zhang, and C. Li. 2015. Chemokine signaling pathway involved in CCL2 expression in patients with rheumatoid arthritis. Yonsei Medical Journal 56: 1134–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hashiramoto, A., T. Yamane, K. Tsumiyama, K. Yoshida, K. Komai, H. Yamada, F. Yamazaki, M. Doi, H. Okamura, and S. Shiozawa. 2010. Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-α. The Journal of Immunology 184: 1560–1565.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Y., M. Li, Q. He, X. Yang, F. Ruan, and G. Sun. 2016. Periploca Forrestii Saponin ameliorates murine CFA-induced arthritis by suppressing cytokine production. Mediators of Inflammation. doi:10.1155/2016/7941684.

    Google Scholar 

  42. King, C.G., T. Kobayashi, P.J. Cejas, T. Kim, K. Yoon, G.K. Kim, E. Chiffoleau, S.P. Hickman, P.T. Walsh, and L.A. Turka. 2006. TRAF6 is a T cell–intrinsic negative regulator required for the maintenance of immune homeostasis. Nature Medicine 12: 1088–1092.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y., X. Wang, H. Yang, H. Liu, Y. Lu, L. Han, and G. Liu. 2013. Kinase AKT controls innate immune cell development and function. Immunology 140: 143–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabana U. Simjee.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, A., Kunwar, B., Mazhar, M. et al. N-(2-Hydroxyphenyl)acetamide: a Novel Suppressor of RANK/RANKL Pathway in Collagen-Induced Arthritis Model in Rats. Inflammation 40, 1177–1190 (2017). https://doi.org/10.1007/s10753-017-0561-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0561-1

KEY WORDS

Navigation