Skip to main content

Advertisement

Log in

TAZ Activator Is Involved in IL-10-Mediated Muscle Responses in an Animal Model of Traumatic Brain Injury

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The transcriptional coactivator with PDZ-binding motif (TAZ) functions as a downstream regulatory target in the Hippo signaling pathway that plays various roles. We previously developed a cell-based assay and identified the TAZ activator IBS008738 as a potential therapeutic target for glucocorticoid-induced atrophy. To further explore the application of IBS008738 in various muscle-related diseases, we examined the function of IBS008738 in inflammatory cytokine-mediated mouse muscle responses after traumatic brain injury (TBI). Preliminary screening suggested that IBS008738 treatments increased the levels of IL-10 in C2C12 cells. In TBI and sham control mice, we compared the effect of IBS008738 treatments on TNF α, IL-6, and IL-10 mRNA levels, muscle morphologic changes, and macrophage phenotype changes. Our findings support that the TAZ activator IBS008738 decreases muscle wasting by upregulating IL-10 and inhibiting TNF α and IL-6, and this process is implemented by changing the macrophage phenotypes. These results indicate a new mechanism of the TAZ activator as a potential therapy for atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jeong, H., S. Bae, S.Y. An, M.R. Byun, J.H. Hwang, M.B. Yaffe, J.H. Hong, and E.S. Hwang. 2010. TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB Journal 24: 3310–3320.

    Article  CAS  PubMed  Google Scholar 

  2. Hong, J.H., and M.B. Yaffe. 2006. TAZ: a beta-catenin-like molecule that regulates mesenchymal stem cell differentiation. Cell Cycle 5: 176–179.

    Article  CAS  PubMed  Google Scholar 

  3. Gabriel, B.M., D.L. Hamilton, A.M. Tremblay, and H. Wackerhage. 2016. The Hippo signal transduction network for exercise physiologists. Journal of Applied Physiology 120: 1105–1117.

    Article  PubMed  Google Scholar 

  4. Yang, Z., K. Nakagawa, A. Sarkar, J. Maruyama, H. Iwasa, Y. Bao, M. Ishigami-Yuasa, S. Ito, H. Kagechika, S. Hata, H. Nishina, S. Abe, M. Kitagawa, and Y. Hata. 2014. Screening with a novel cell-based assay for TAZ activators identifies a compound that enhances myogenesis in C2C12 cells and facilitatesmuscle repair in a muscle injury model. Molecular and Cellular Biology 34: 1607–1621.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Park, G.H., H. Jeong, M.G. Jeong, E.J. Jang, M.A. Bae, Y.L. Lee, N.J. Kim, J.H. Hong, and E.S. Hwang. 2014. Novel TAZ modulators enhance myogenic differentiation and muscle regeneration. British Journal of Pharmacology 171: 4051–4061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jang, E.J., H. Jeong, J.O. Kang, N.J. Kim, M.S. Kim, S.H. Choi, S.E. Yoo, J.H. Hong, M.A. Bae, and E.S. Hwang. 2012. TM-25659 enhances osteogenic differentiation and suppresses adipogenic differentiation by modulating the transcriptional co-activator TAZ. British Journal of Pharmacology 165: 1584–1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cisterna, B.A., C. Cardozo, and J.C. Sáez. 2014. Neuronal involvement in muscular atrophy. Frontiers in Cellular Neuroscience 8: article 405.

    Article  PubMed  Google Scholar 

  8. Cohen, S., J.A. Nathan, and A.L. Goldberg. 2015. Muscle wasting in disease: molecular mechanisms and promising therapies. Nature Reviews Drug Discovery 14: 58–74.

    Article  CAS  PubMed  Google Scholar 

  9. Palus, S., S. von Haehling, and J. Springer. 2014. Muscle wasting: an overview of recent developments in basic research. International Journal of Cardiology 176: 640–644.

    Article  PubMed  Google Scholar 

  10. Meador, B.M., C.P. Krzyszton, R.W. Johnson, and K.A. Huey. 2008. Effects of IL-10 and age on IL-6, IL-1beta, and TNF-alpha responses in mouse skeletal and cardiac muscle to an acute inflammatory insult. Journal of Applied Physiology 104: 991–997.

    Article  CAS  PubMed  Google Scholar 

  11. Tidball, J.G., and S.A. Villalta. 2010. Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 298: R1173–R1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bencze, M., E. Negroni, D. Vallese, H. Yacoub-Youssef, S. Chaouch, A. Wolff, A. Aamiri, J.P. Di Santo, B. Chazaud, G. Butler-Browne, W. Savino, V. Mouly, and Riederer. 2012. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Molecular Therapy 20: 2168–2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deng, B., M. Wehling-Henricks, S.A. Villalta, Y. Wang, and J.G. Tidball. 2012. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. Journal of Immunology 189: 3669–3680.

    Article  CAS  Google Scholar 

  14. Zoranovic, T., L. Grmai, and E.A. Bach. 2013. Regulation of proliferation, cell competition, and cellular growth by the Drosophila JAK-STAT pathway. JAKSTAT 2: e25408.

    PubMed  PubMed Central  Google Scholar 

  15. Carey, A.J., C.K. Tan, and G.C. Ulett. 2012. Infection-induced IL-10 and JAK-STAT: a review of the molecular circuitry controlling immune hyperactivity in response to pathogenic microbes. JAKSTAT 1: 159–167.

    PubMed  PubMed Central  Google Scholar 

  16. Karin, M., and H. Clevers. 2016. Reparative inflammation takes charge of tissue regeneration. Nature 529: 307–315.

    Article  CAS  PubMed  Google Scholar 

  17. Li, L.Z., Y.J. Bao, and M. Zhao. 2011. 17beta-estradiol attenuates programmed cell death in cortical pericontusional zone following traumatic brain injury via upregulation of ERalpha and inhibition of caspase-3 activation. Neurochemistry International 58: 126–133.

    Article  CAS  PubMed  Google Scholar 

  18. Ehmer, U., and J. Sage. 2016. Control of proliferation and cancer growth by the hippo signaling pathway. Molecular Cancer Research 14: 127–140.

    Article  CAS  PubMed  Google Scholar 

  19. Yu, F.X., B. Zhao, and K.L. Guan. 2015. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163: 811–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bao, Y., Y. Hata, M. Ikeda, and K. Withanage. 2011. Mammalian Hippo pathway: from development to cancer and beyond. Journal of Biochemistry 149: 361–379.

    Article  CAS  PubMed  Google Scholar 

  21. Pan, D. 2010. The Hippo signaling pathway in development and cancer. Developmental Cell 19: 491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kodaka, M., Z. Yang, K. Nakagawa, J. Maruyama, X. Xu, A. Sarkar, A. Ichimura, Y. Nasu, T. Ozawa, H. Iwasa, M. Ishigami-Yuasa, S. Ito, H. Kagechika, and Y. Hata. 2015. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells. Experimental Cell Research 336: 171–181.

    Article  CAS  PubMed  Google Scholar 

  23. Kawano, S., J. Maruyama, S. Nagashima, K. Inami, W. Qiu, H. Iwasa, K. Nakagawa, M. Ishigami-Yuasa, H. Kagechika, H. Nishina, and Y. Hata. 2015. A cell-based screening for TAZ activators identifies ethacridine, a widely used antiseptic and abortifacient, as a compound that promotes dephosphorylation of TAZ and inhibits adipogenesis in C3H10T1/2 cells. Journal of Biochemistry 158: 413–423.

    Article  CAS  PubMed  Google Scholar 

  24. Nitahara-Kasahara, Y., H. Hayashita-Kinoh, T. Chiyo, A. Nishiyama, H. Okada, S. Takeda, and T. Okada. 2014. Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10. Human Molecular Genetics 23: 3990–4000.

    Article  CAS  PubMed  Google Scholar 

  25. Ruffell, D., F. Mourkioti, A. Gambardella, P. Kirstetter, R.G. Lopez, N. Rosenthal, and C. Nerlov. 2009. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proceedings of the National Academy of Sciences of the United States of America 106: 17475–17480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful for Hata Yutaka (Tokyo Medical and Dental University) for materials and advice. This study was supported by Grant from the National Natural Science Foundation of China (No. 81401143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyu Yang.

Ethics declarations

All experiments were done according to the international and institutional guidelines for animal care, and all experimental procedures were approved by the Animal Care and Use Committee of China Medical University (protocol number 2014PS28K).

Conflict of Interest

The authors declare that they have no conflicts of interest.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

Supplementary Table S1

(XLS 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, R., Li, D., Wang, G. et al. TAZ Activator Is Involved in IL-10-Mediated Muscle Responses in an Animal Model of Traumatic Brain Injury. Inflammation 40, 100–105 (2017). https://doi.org/10.1007/s10753-016-0457-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0457-5

KEY WORDS

Navigation