Skip to main content
Log in

The Effects of Molecular Hydrogen and Suberoylanilide Hydroxamic Acid on Paraquat-Induced Production of Reactive Oxygen Species and TNF-α in Macrophages

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the effects of molecular hydrogen (H2) and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on paraquat (PQ)-stimulated production of reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) in macrophages. First, the PQ optimal concentration was determined in RAW264.7 macrophage by treating serum-starved cells with PQ at 0, 0.001, 0.01, 0.1, 1, and 10 mM. We evaluated at 1, 2 and 8 h (1) cell viability (by means of trypan blue exclusion method), (2) intracellular ROS levels (with a fluorescent DCFH-DA probe), and (3) TNF-α level in the culture media (determined by enzyme-linked immunosorbent assay, ELISA). Subsequently, mouse RAW267.4 macrophages were treated with PQ in combination with SAHA and/or H2 for 8 h. PQ exerted a significant stimulatory but nontoxic effect on RAW267.4 macrophages at 0.1 mM. This PQ concentration was used in the subsequent experiments. H2 and H2 combined with SAHA evoked a greater reduction in PQ-induced ROS production than SAHA alone, especially at 2 and 8 h. At 1 and 2 h, treatments involving H2 caused a greater decrease in PQ-induced production of TNF-α than the corresponding treatments without H2. However, at 8 h, treatment with SAHA evoked more pronounced effects on TNF-α than treatment without SAHA. H2 decreases PQ-induced ROS production and attenuates early PQ-induced TNF-α production whereas SAHA reduces the late phase of the PQ-induced TNF-α production in macrophages. The effects are enhanced by the combination of H2 and SAHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Suntres, Z.E. 2002. Role of antioxidants in paraquat toxicity. Toxicology 180(1): 65–77.

    Article  CAS  PubMed  Google Scholar 

  2. Hensley, K., K.A. Robinson, S.P. Gabbita, et al. 2000. Reactive oxygen species, cell signaling, and cell injury. Free Radical Biology and Medicine 28(10): 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  3. Di, A., X.P. Gao, F. Qian, et al. 2012. The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nature Immunology 13(1): 29–34.

    Article  CAS  Google Scholar 

  4. Wang, Y.L., A.B. Malik, Y. Sun, et al. 2011. Innate immune function of the adherens junction protein p120-catenin in endothelial response to endotoxin. Journal of Immunology 186(5): 3180–3187.

    Article  CAS  Google Scholar 

  5. Thangavel, J., S. Samanta, S. Rajasingh, et al. 2015. Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury. Journal of Cell Science 128(16): 3094–3105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin, J.L., D.T. Lin-Tan, K.H. Chen, et al. 2011. Improved survival in severe paraquat poisoning with repeated pulse therapy of cyclophosphamide and steroids. Intensive Care Medicine 37(6): 1006–1013.

    Article  CAS  PubMed  Google Scholar 

  7. Harley, J.B., S. Grinspan, R.K. Root, et al. 1977. Paraquat suicide in a young woman: results of therapy directed against the superoxide radical. Yale Journal of Biology and Medicine 50(5): 481–488.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Köppel, C., C. von Wissmann, D. Barckow, et al. 1994. Inhaled nitric oxide in advanced paraquat intoxication. Journal of Toxicology, Clinical Toxicology 32(2): 205–214.

    Article  PubMed  Google Scholar 

  9. Hong, S.Y., K.Y. Hwang, E.Y. Lee, et al. 2002. Effect of vitamin C on plasma total antioxidant status in patients with paraquat intoxication. Toxicology Letters 126(1): 51–59.

    Article  CAS  PubMed  Google Scholar 

  10. Hong, S.Y., J.O. Yang, E.Y. Lee, et al. 2003. Effect of haemoperfusion on plasma paraquat concentration in vitro and in vivo. Toxicology and Industrial Health 19(1): 17–23.

    Article  CAS  PubMed  Google Scholar 

  11. Huang, C.S., T. Kawamura, Y. Toyoda, et al. 2010. Recent advances in hydrogen research as a therapeutic medical gas. Free Radical Research 44(9): 971–982.

    Article  CAS  PubMed  Google Scholar 

  12. Ohsawa, I., M. Ishikawa, K. Takahashi, et al. 2007. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Medicine 13(6): 689–694.

    Article  CAS  Google Scholar 

  13. Zheng, X.F., X.J. Sun, Z.F. Xia, et al. 2011. Hydrogen resuscitation, a new cytoprotective approach. Clinical and Experimental Pharmacology & Physiology 38(3): 155–163.

    Article  CAS  Google Scholar 

  14. Li, Y., B. Liu, E.Y. Fukudome, et al. 2010. Surviving lethal septic shock without fluid resuscitation in a rodent model. Surgery 148(2): 246–254.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sailhamer, E.A.L.Y., and E.J. Smith. 2008. Acetylation: a novel method for modulation of the immune response following trauma/hemorrhage and inflammatory second hit in animals and humans. Surgery 144(2): 204–216.

    Article  PubMed  Google Scholar 

  16. Chong, W., Y. Li, B. Liu, et al. 2012. Histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates Toll-like receptor 4 signaling in lipopolysaccharide-stimulated mouse macrophages. Journal of Surgical Research 178(2): 851–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Y., B. Liu, H. Zhao, et al. 2009. Protective effect of suberoylanilide hydroxamic acid against LPS-induced septic shock in rodents. Shock 32(5): 517–523.

    Article  CAS  PubMed  Google Scholar 

  18. Kim, H., S.W. Lee, K.M. Baek, et al. 2011. Continuous hypoxia attenuates paraquat-induced cytotoxicity in the human A549 lung carcinoma cell line. Experimental and Molecular Medicine 43(9): 494–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jang, Y.J., J.H. Won, M.J. Back, et al. 2015. Paraquat induces apoptosis through a mitochondria-dependent pathway in RAW264.7 cells. Biomolecules Thermology (Seoul) 23(5): 407–413.

    Article  CAS  Google Scholar 

  20. Autor AP (ed), Biochemical mechanisms of paraquat toxicity. Academic Press, New York. 1977.

  21. Heath, D., and P. Smith. 1977. The pathology of the lung in paraquat poisoning. In Biochemical mechanisms of paraquat toxicity, ed. A.P. Autor, 39–51. New York: Academic.

    Chapter  Google Scholar 

  22. Pasi A (ed), The toxicity of paraquat, diquat and morfamquat. Hans Huber, Bern. 1978.

  23. Bus, J.S., and J.E. Gibson. 1984. Paraquat: model for oxidant-initiated toxicity. Environmental Health Perspectives 55: 37–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Comporti, M. 1989. Three models of free radical-induced cell injury. Chemico-Biological Interactions 72: 1–56.

    Article  CAS  PubMed  Google Scholar 

  25. Gram, T.E. 1997. Chemically reactive intermediates and pulmonary xenobiotic toxicity. Pharmacological Reviews 49: 297–341.

    CAS  PubMed  Google Scholar 

  26. Adachi, J., K. Ishii, M. Tomita, et al. 2003. Consecutive administration of paraquat to rats induces enhanced cholesterol peroxidation and lung injury. Archives of Toxicology 77(6): 353–357.

    Article  CAS  PubMed  Google Scholar 

  27. Zerin, T., Y.S. Kim, S.Y. Hong, et al. 2012. Protective effect of methylprednisolone on paraquat-induced A549 cell cytotoxicity via induction of efflux transporter, P-glycoprotein expression. Toxicology Letters 208(2): 101–107.

    Article  CAS  PubMed  Google Scholar 

  28. Jo, Y.H., K. Kim, J.E. Rhee, et al. 2011. Therapeutic hypothermia attenuates acute lung injury in paraquat intoxication in rats. Resuscitation 82(4): 487–491.

    Article  CAS  PubMed  Google Scholar 

  29. WWest, A.P., G.S. Shadel, S. Ghosh, et al. 2011. Mitochondria in innate immune responses. Nature Reviews Immunology 11(6): 389–402.

    Article  CAS  Google Scholar 

  30. Kaminski, M.M., D. Roth, P.H. Krammer, et al. 2013. Mitochondria as oxidative signaling organelles in T-cell activation: physiological role and pathological implications. Archivum Immunologiae et Therapiae Experimentalis (Warsz) 61(5): 367–384.

    Article  CAS  Google Scholar 

  31. Mittal, M., M.R. Siddiqui, K. Tran, et al. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling 20(7): 1127–1150.

    Google Scholar 

  32. Schieber, M., and N.S. Chandel. 2014. ROS function in redox signaling and oxidative stress. Current Biology 24(10): R453–R462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohta, S. 2011. Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications. Current Pharmaceutical Design 17(22): 2241–2252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ohta, S. 2012. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases. Biochimica et Biophysica Acta 1820(5): 586–594.

    Article  CAS  PubMed  Google Scholar 

  35. Abraini, J.H., M.C. Gardette-Chauffour, E. Martinez, et al. 1994. Psychophysiological reactions in humans during an open sea dive to 500 m with a hydrogen–helium-oxygen mixture. Journal of Applied Physiology 76(3): 1113–1118.

    CAS  PubMed  Google Scholar 

  36. Fontanari, P., M. Badier, C. Guillot, et al. 2000. Changes in maximal performance of inspiratory and skeletal muscles during and after the 7.1-MPa Hydra 10 record human dive. European Journal of Applied Physiology 81(4): 325–328.

    Article  CAS  PubMed  Google Scholar 

  37. Lillo, R.S., and E.C. Parker. 2000. Mixed-gas model for predicting decompression sickness in rats. Journal of Applied Physiology 89(6): 2107–2116.

    CAS  PubMed  Google Scholar 

  38. Halaweish, I., V. Nikolian, and P. Georgoff. 2015. Creating a “prosurvival phenotype” through histone deacetylase inhibition: past, present, and future. Shock 44(Suppl 1): 6–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gonzales, E., H. Chen, R. Munuve, et al. 2006. Valproic acid prevents hemorrhage-associated lethality and affects the acetylation pattern of cardiac histones. Shock 25(4): 395–401.

    Article  CAS  PubMed  Google Scholar 

  40. Chong, W., Y. Li, B. Liu, et al. 2012. Anti-inflammatory properties of histone deacetylase inhibitors: a mechanistic study. Journal of Trauma and Acute Care Surgery 72(2): 347–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao, T., Y. Li, B. Liu, et al. 2013. Novel pharmacologic treatment attenuates septic shock and improves long-term survival. Surgery 154(2): 206–213.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We express our thanks to the Institute of Endocrinology of First Affiliated Hospital of China Medical University for generously providing all the experimental materials used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chong.

Ethics declarations

Conflict of Interest

This work was supported by the Science and Technology Program of Liaoning Province (Grant number 201202289).

Additional information

Jiaoyang Li and Xizi Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wu, X., Chen, Y. et al. The Effects of Molecular Hydrogen and Suberoylanilide Hydroxamic Acid on Paraquat-Induced Production of Reactive Oxygen Species and TNF-α in Macrophages. Inflammation 39, 1990–1996 (2016). https://doi.org/10.1007/s10753-016-0434-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0434-z

KEY WORDS

Navigation