Skip to main content

Advertisement

Log in

Anti-inflammatory Steroid from Phragmitis rhizoma Modulates LPS-Mediated Signaling Through Inhibition of NF-κB Pathway

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

ABSTRACT

Lipopolysaccharides (LPS) strongly stimulate immune cells, and unabated activation of immune system by LPS may lead to an exacerbation of sickness and depression. In this study, stigmasta-3,5-dien-7-one (ST) was isolated from Phragmitis rhizoma as a negative regulator of LPS-induced inflammation in macrophages. ST effectively reduced nitric oxide (NO), prostaglandin E2, and pro-inflammatory cytokine levels, which were markedly raised by LPS treatment. In addition, ST blocked the nuclear factor-kappa B (NF-κB) signaling pathway via down-regulation of phospho-p38 mitogen-activated protein kinase and phosphorylation and degradation of the inhibitor of NF-κB α. To our knowledge, this is the first study showing anti-inflammatory activities of ST isolated from Phragmitis rhizoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Fujihara, M., M. Muroi, K. Tanamoto, T. Suzuki, H. Azuma, and H. Ikeda. 2003. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacology & Therapeutics 100: 171–194.

    Article  CAS  Google Scholar 

  2. Rafi, M.M., P.N. Yadav, and M. Reyes. 2007. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells. Journal of Food Science 72: S069–S094.

    Article  PubMed  Google Scholar 

  3. Li, Q., and I.M. Verma. 2002. NF-κB regulation in the immune system. Nature Reviews Immunology 2: 725–734.

    Article  CAS  PubMed  Google Scholar 

  4. Murakami, A., and H. Ohigashi. 2007. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. International Journal of Cancer 121: 2357–2363.

    Article  CAS  PubMed  Google Scholar 

  5. Kim, Y.W., R.J. Zhao, S.J. Park, J.R. Lee, I.J. Choi, C.H. Yang, et al. 2008. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production. British Journal of Pharmacology 154: 165–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hwang, S.J., and H.J. Lee. 2015. Phenyl-β-D-glucopyranoside exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW 264.7 cells. Inflammation 38: 1071-1079.

  7. Qian, Z.G., and L.F. Jiang. 2014. Preparation and antibacterial activity of the oligosaccharides derived from Rhizoma Phragmites. Carbohydrate Polymers 111: 356–358.

    Article  CAS  PubMed  Google Scholar 

  8. Kim, B.S. 2014. The effects of Phragmitis Rhizoma herbal-acupuncture solution on inflammation in human mast cells and human alveolar epithelial cell lines-Phragmitis Rhizoma’s effects. Journal of Korean Medical Science 35: 1–9.

    CAS  Google Scholar 

  9. Li, H., Y.M. Gao, J. Zhang, L. Wang, and X.X. Wang. 2013. Ultra-performance liquid chromatography fingerprinting for quality control of Phragmitis rhizoma (Lugen) produced in Baiyangdian. Pharmacognosy Magazine 9: 285–289.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Baldé, A.M., S. Apers, T.E. De Bruyne, H. Van den Heuvel, M. Claeys, A.J. Vlietinck, et al. 2000. Steroids from Harrisonia abyssinica. Planta Medica 66(2000): 67–69.

    Article  PubMed  Google Scholar 

  11. Nam, Y., Y.H. Chung, L.Y. Chu, H.S. Lee, E.S. Park, K.W. Hwang, et al. 2013. Inhibitory effects of polysaccharide-rich extract of Phragmites rhizoma on atopic dermatitis-like skin lesions in NC/Nga mice. Life Sciences 92: 866–872.

    Article  CAS  PubMed  Google Scholar 

  12. Szakiel, A., B. Niżyński, and C. Pączkowski. 2013. Triterpenoid profile of flower and leaf cuticular waxes of heather Calluna vulgaris. Natural Product Research 27: 1404–1407.

    Article  CAS  PubMed  Google Scholar 

  13. Mariotto, S., Y. Suzuki, T. Persichini, M. Colasanti, H. Suzuki, and O. Cantoni. 2007. Cross-talk between NO and arachidonic acid in inflammation. Current Medicinal Chemistry 14: 1940–1944.

    Article  CAS  PubMed  Google Scholar 

  14. Cuzzocrea, S.I., E. Mazzon, G. Calabro, L. Dugo, A. De Sarro, F.A. van De Loo, et al. 2000. Inducible nitric oxide synthase-knockout mice exhibit resistance to pleurisy and lung injury caused by carrageenan. American Journal of Respiratory and Critical Care Medicine 162: 1859–1866.

    Article  CAS  PubMed  Google Scholar 

  15. Kristof, A.S., P. Goldberg, V. Laubach, and S.N. Hussain. 1998. Role of inducible nitric oxide synthase in endotoxin-induced acute lung injury. American Journal of Respiratory and Critical Care Medicine 158: 1883-1889.

  16. Wilhelms, D.B., M. Kirilov, E. Mirrasekhian, A. Eskilsson, U.Ö. Kugelberg, C. Klar, et al. 2014. Deletion of prostaglandin E2 synthesizing enzymes in brain endothelial cells attenuates inflammatory fever. The Journal of Neuroscience 34: 11684–11690.

    Article  CAS  PubMed  Google Scholar 

  17. Germano, G., P. Allavena, and A. Mantovani. 2008. Cytokines as a key component of cancer-related inflammation. Cytokine 43: 374–379.

    Article  CAS  PubMed  Google Scholar 

  18. Cunha, F.Q., J. Assreuy, D.W. Moss, D. Rees, L.M.C. Leal, S. Moncada, et al. 1994. Differential induction of nitric oxide synthase in various organs of the mouse during endotoxemia: role of TNF-alpha and IL-1-beta. Immunology 81: 211–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Beasley, D., and M. Eldridge. 1994. Interleukin-1 beta and tumor necrosis factor-alpha synergistically induce NO synthase in rat vascular smooth muscle cells. American Journal of Physiology 266: R1197–R1203.

    CAS  PubMed  Google Scholar 

  20. Sen, R., and D. Baltimore. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46: 705–716.

    Article  CAS  PubMed  Google Scholar 

  21. Magnani, M., R. Crinelli, M. Bianchi, and A. Antonelli. 2000. The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-kappaB (NF-kB). Current Drug Targets 1: 387–399.

    Article  CAS  PubMed  Google Scholar 

  22. Scheidereit, C. 2006. IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25: 6685–6705.

    Article  CAS  PubMed  Google Scholar 

  23. Huang, B.P., C.H. Lin, H.M. Chen, J.T. Lin, Y.F. Cheng, and S.H. Kao. 2015. AMPK activation inhibits expression of proinflammatory mediators through downregulation of PI3K/p38 MAPK and NF-κB signaling in murine macrophages. DNA and Cell Biology 34: 133–141.

    Article  CAS  PubMed  Google Scholar 

  24. Caivano, M., and P. Cohen. 2000. Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1beta in Raw264 macrophages. The Journal of Immunology 164: 3018–3025.

    Article  CAS  PubMed  Google Scholar 

  25. Yun, K.J., J.Y. Kim, J.B. Kim, K.W. Lee, S.Y. Jeong, H.J. Park, et al. 2008. Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-kappaB inactivation in RAW 264.7 macrophages: possible involvement of the IKK and MAPK pathways. International Immunopharmacology 8: 431–441.

    Article  CAS  PubMed  Google Scholar 

  26. Vassallo, A., N. De Tommasi, I. Merfort, R. Sanogo, L. Severino, et al. 2013. Steroids with anti-inflammatory activity from Vernonia nigritiana Oliv. & Hiern. Phytochemistry 96: 288–298.

    Article  CAS  PubMed  Google Scholar 

  27. Quan, M., S.E. Park, Z. Lin, M.W. Hong, S.Y. Park, and Y.Y. Kim. 2015. Steroid treatment can inhibit nuclear localization of members of the NF-κB pathway in human disc cells stimulated with TNF-α. European Journal of Orthopaedic Surgery and Traumatology 25(Suppl 1): S43–S51.

    Article  PubMed  Google Scholar 

  28. D’Acquisto, F., M.J. May, and S. Ghosh. 2002. Inhibition of nuclear factor kappa B (NF-κB): an emerging theme in anti-inflammatory therapies. Molecular Interventions 2: 22–35.

    Article  PubMed  Google Scholar 

  29. Korhonen, R., A. Lahti, M. Hämäläinen, H. Kankaanranta, and E. Moilanen. 2002. Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide-treated macrophages. Molecular Pharmacology 62: 698–704.

    Article  CAS  PubMed  Google Scholar 

  30. Ellis, L., V. Gilston, C. Soo, C. Morris, B. Kidd, and P. Winyard. 2000. Activation of the transcription factor NF-κB in the rat air pouch model of inflammation. Annals of the Rheumatic Diseases 59: 303–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No.2012R1A5A2A42671316) and partly by the Technology R&D Program funded by the Small and Medium Business Administration (SMBA, Korea).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Rok Lee.

Additional information

Sook Jahr Park and Young Woo Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.J., Kim, Y.W., Park, M.K. et al. Anti-inflammatory Steroid from Phragmitis rhizoma Modulates LPS-Mediated Signaling Through Inhibition of NF-κB Pathway. Inflammation 39, 727–734 (2016). https://doi.org/10.1007/s10753-015-0299-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0299-6

KEY WORDS

Navigation