Skip to main content
Log in

Viscoelasticity and Ultrastructure in Coagulation and Inflammation: Two Diverse Techniques, One Conclusion

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The process of blood clotting has been studied for centuries. A synopsis of current knowledge pertaining to haemostasis and the blood components, including platelets and fibrin networks which are closely involved in coagulation, are discussed. Special emphasis is placed on tissue factor (TF), calcium and thrombin since these components have been implicated in both the coagulation process and inflammation. Analysis of platelets and fibrin morphology indicate that calcium, tissue factor and thrombin at concentrations used during viscoelastic analysis (with thromboelastography or TEG) bring about alterations in platelet and fibrin network ultrastructure, which is similar to that seen in inflammation. Scanning electron microscopy indicated that, when investigating platelet structure in disease, addition of TF, calcium or thrombin will mask disease-induced alterations associated with platelet activation. Therefore, washed platelets without any additives is preferred for morphological analysis. Furthermore, morphological and viscoelastic analysis confirmed that thrombin activation is the preferred method of fibrin activation when investigating fibrin network ultrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gasparyan, A.Y., L. Ayvazyan, H. Blackmore, and G.D. Kitas. 2011. Writing a narrative biomedical review: Considerations for authors, peer reviewers, and editors. Rheumatology International 31(11): 1409–1417.

    PubMed  Google Scholar 

  2. Owen, C.A. (2001) A history of blood coagulation. In: W.L. Nichols & E.J.W. Bowie (eds) Mayo Foundation for Medical Education and Research, Rochester, pp 169–180.

  3. Connor, W.E. 1958. The chemistry of blood coagulation. A.M.A. Archives of Internal Medicine 102(4): 681–682.

    Google Scholar 

  4. Brewer, D.B. 2006. Max Schultze (1865), G. Bizzozero (1882) and the discovery of the platelet. British Journal of Haematology 133(3): 251–258.

    PubMed  Google Scholar 

  5. Ribatti, D., and E. Crivellato. 2007. Giulio Bizzozero and the discovery of platelets. Leukemia Research 31(10): 1339–1341.

    CAS  PubMed  Google Scholar 

  6. Dahlbäck, B. 2000. Blood coagulation. Lancet 355(9215): 1627–1632.

    PubMed  Google Scholar 

  7. Norris, L.A. 2003. Blood coagulation. Best Practice and Research: Clinical Obstetrics and Gynaecology 17(3): 369–383.

    PubMed  Google Scholar 

  8. Davie, E.W. 1995. Biochemical and molecular aspects of the coagulation cascade. Thrombosis and Haemostasis 74(1): 1–6.

    CAS  PubMed  Google Scholar 

  9. Macfarlane, R.G. 1964. An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202(4931): 498–499.

    CAS  PubMed  Google Scholar 

  10. Monroe, D.M., H.R. Roberts, and M. Hoffman. 1994. Platelet procoagulant complex assembly in a tissue factor-initiated system. British Journal of Haematology 88(2): 364–371.

    CAS  PubMed  Google Scholar 

  11. Hoffman, M., D.M. Monroe, J.A. Oliver, and H.R. Roberts. 1995. Factors IXa and Xa play distinct roles in tissue factor-dependent initiation of coagulation. Blood 86(5): 1794–1801.

    CAS  PubMed  Google Scholar 

  12. Monroe, D.M., M. Hoffman, and H.R. Roberts. 1996. Transmission of a procoagulant signal from tissue factor-bearing cells to platelets. Blood Coagulation and Fibrinolysis 7(4): 459–464.

    CAS  PubMed  Google Scholar 

  13. Pérez-Gómez, F., and R. Bover. 2007. The new coagulation cascade and its possible influence on the delicate balance between thrombosis and hemorrhage. La nueva cascada de la coagulación y su posible influencia en el difícil equilibrio entre trombosis y hemorragia. Revista Espanola de Cardiologia 60(12): 1217–1219.

    PubMed  Google Scholar 

  14. Hoffman, M., and D.M. Monroe. 2007. Coagulation 2006: a modern view of hemostasis. Hematology/Oncology Clinics of North America 21(1): 1–11.

    PubMed  Google Scholar 

  15. Smith, S.A. 2009. The cell-based model of coagulation: State-of-the-art review. Journal of Veterinary Emergency and Critical Care 19(1): 3–10.

    PubMed  Google Scholar 

  16. Hornyak, T.J., and J.A. Shafer. 1991. Role of calcium ion in the generation of factor XIII activity. Biochemistry 30(25): 6175–6182.

    CAS  PubMed  Google Scholar 

  17. Adany, R., and H. Bardos. 2003. Factor XIII subunit A as an intracellular transglutaminase. Cellular and Molecular Life Sciences CMLS 60(6): 1049–1060.

    CAS  PubMed  Google Scholar 

  18. Janus, T.J., S.D. Lewis, L. Lorand, and J.A. Shafer. 1983. Promotion of thrombin-catalyzed activation of factor XIII by fibrinogen. Biochemistry 22(26): 6269–6272.

    CAS  PubMed  Google Scholar 

  19. Hoffman, M. 2003. Remodeling the blood coagulation cascade. Journal of Thrombosis and Thrombolysis 16(1–2): 17–20.

    CAS  PubMed  Google Scholar 

  20. Hoffman, M., and D.M. Monroe Iii. 2001. A cell-based model of hemostasis. Thrombosis and Haemostasis 85(6): 958–965.

    CAS  PubMed  Google Scholar 

  21. Campbell, R.A., K.A. Overmyer, C.H. Selzman, B.C. Sheridan, and A.S. Wolberg. 2009. Contributions of extravascular and intravascular cells to fibrin network formation, structure, and stability. Blood 114(23): 4886–4896.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Mann, K.G. 1993. Introduction: Blood coagulation. Methods in Enzymology 222: 1–10.

    CAS  PubMed  Google Scholar 

  23. Furie, B., and B.C. Furie. 1992. Molecular and cellular biology of blood coagulation. New England Journal of Medicine 326(12): 800–806.

    CAS  PubMed  Google Scholar 

  24. Kirchhofer, D., and Y. Nemerson. 1996. Initiation of blood coagulation: the tissue factor/factor VIIa complex. Current Opinion in Biotechnology 7(4): 386–391.

    CAS  PubMed  Google Scholar 

  25. Mann, K.G., C. Van’t Veer, K. Cawthern, and S. Butenas. 1998. The role of the tissue factor pathway in initiation of coagulation. Blood Coagulation and Fibrinolysis 9(SUPPL. 1): S3–S7.

    CAS  PubMed  Google Scholar 

  26. Hoffman, M., D.M. Monroe, and H.R. Roberts. 1996. Cellular interactions in hemostasis. Haemostasis 26(SUPPL. 1): 12–16.

    CAS  PubMed  Google Scholar 

  27. Zwaal, R.F.A., P. Comfurius, and E.M. Bevers. 1998. Lipid–protein interactions in blood coagulation. Biochimica et Biophysica Acta - Reviews on Biomembranes 1376(3): 433–453.

    CAS  Google Scholar 

  28. Sadler, J.E. 1998. Biochemistry and genetics of von Willebrand factor. Annual Review of Biochemistry 67: 395–424.

    CAS  PubMed  Google Scholar 

  29. Gailani, D., and G.J. Broze Jr. 1991. Factor XI activation in a revised model of blood coagulation. Science 253(5022): 909–912.

    CAS  PubMed  Google Scholar 

  30. Lammle, B., W.A. Wuillemin, I. Huber, M. Krauskopf, C. Zurcher, R. Pflugshaupt, and M. Furlan. 1991. Thromboembolism and bleeding tendency in congenital factor XII deficiency—A study on 74 subjects from 14 Swiss families. Thrombosis and Haemostasis 65(2): 117–121.

    CAS  PubMed  Google Scholar 

  31. Bugge, T.H., Q. Xiao, K.W. Kombrinck, M.J. Flick, K. Holmback, M.J.S. Danton, M.C. Colbert, D.P. Witte, K. Fujikawa, E.W. Davie, et al. 1996. Fatal embryonic bleeding events in mice lacking tissue factor, the cell- associated initiator of blood coagulation. Proceedings of the National Academy of Sciences of the United States of America 93(13): 6258–6263.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Camerer, E., A.B... Kolstø, and H. Prydz. 1996. Cell biology of tissue factor, the principal initiator of blood coagulation. Thrombosis Research 81(1): 1–41.

  33. Morrissey, J.H. 2001. Tissue factor: An enzyme cofactor and a true receptor. Thrombosis and Haemostasis 86(1): 66–74.

    CAS  PubMed  Google Scholar 

  34. Heinrich, J., L. Balleisen, H. Schulte, G. Assmann, and J. Van de Loo. 1994. Erratum: Fibrinogen and factor VII in the prediction of coronary risk: Results from the PROCAM study in healthy men (Arteriosclerosis and Thrombosis (1994) 14 (54-59)). Arteriosclerosis and Thrombosis 14(8): 1392.

    Google Scholar 

  35. Meade, T.W., S. Mellows, M. Brozovic, G.J. Miller, R.R. Chakrabarti, W.R. North, A.P. Haines, Y. Stirling, J.D. Imeson, and S.G. Thompson. 1986. Haemostatic function and ischaemic heart disease: Principal results of the Northwick Park Heart Study. Lancet 2(8506): 533–537.

    CAS  PubMed  Google Scholar 

  36. Scott, C.F., L.D. Silver, A.D. Purdon, and R.W. Colman. 1985. Cleavage of human high molecular weight kininogen by factor XIa in vitro: Effect on structure and function. Journal of Biological Chemistry 260(19): 10856–10863.

    CAS  PubMed  Google Scholar 

  37. Asakai, R., D.W. Chung, E.W. Davie, and U. Seligsohn. 1991. Factor XI deficiency in Ashkenazi Jews in Israel. New England Journal of Medicine 325(3): 153–158.

    CAS  PubMed  Google Scholar 

  38. Meijers, J.C.M., W.L.H. Tekelenburg, B.N. Bouma, R.M. Bertina, and F.R. Rosendaal. 2000. High levels of coagulation factor XI as a risk factor for venous thrombosis. New England Journal of Medicine 342(10): 696–701.

    CAS  PubMed  Google Scholar 

  39. Colman, R.W. 1999. Biologic activities of the contact factors in vivo. Potentiation of hypotension, inflammation, and fibrinolysis, and inhibition of cell adhesion, angiogenesis and thrombosis. Thrombosis and Haemostasis 82(6): 1568–1577.

    CAS  PubMed  Google Scholar 

  40. Nesheim, M., D.D. Pittman, A.R. Giles, D.N. Fass, J.H. Wang, D. Slonosky, and R.J. Kaufman. 1991. The effect of plasma von Willebrand factor on the binding of human factor VIII to thrombin-activated human platelets. Journal of Biological Chemistry 266(27): 17815–17820.

    CAS  PubMed  Google Scholar 

  41. Hamer, R.J., J.A. Koedam, N.H. Beeser-Visser, and J.J. Sixma. 1987. The effect of thrombin on the complex between factor VIII and von Willebrand factor. European Journal of Biochemistry 167(2): 253–259.

    CAS  PubMed  Google Scholar 

  42. Bertina, R.M., B.P.C. Koeleman, T. Koster, F.R. Rosendaal, R.J. Dirven, H. De Ronde, P.A. Van Der Velden, and P.H. Reitsma. 1994. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369(6475): 64–67.

    CAS  PubMed  Google Scholar 

  43. Nesheim, M.E., J.B. Taswell, and K.G. Mann. 1979. The contribution of bovine factor V and factor Va to the activity of prothrombinase. Journal of Biological Chemistry 254(21): 10952–10962.

    CAS  PubMed  Google Scholar 

  44. Doyle, M.F., and P.E. Haley. 1993. Meizothrombin: active intermediate formed during prothrombinase-catalyzed activation of Prothrombin. Methods in Enzymology 222: 299–312.

    CAS  PubMed  Google Scholar 

  45. Bauer, K.A. 1999. Activation markers of coagulation. Bailliere’s Best Practice and Research in Clinical Haematology 12(3): 387–406.

    CAS  Google Scholar 

  46. Poort, S.R., F.R. Rosendaal, P.H. Reitsma, and R.M. Bertina. 1996. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88(10): 3698–3703.

    CAS  PubMed  Google Scholar 

  47. Brummel, K.E., S.G. Paradis, S. Butenas, and K.G. Mann. 2002. Thrombin functions during tissue factor-induced blood coagulation. Blood 100(1): 148–152.

    CAS  PubMed  Google Scholar 

  48. Tulinsky, A. 1996. Molecular interactions of thrombin. Seminars in Thrombosis and Hemostasis 22(2): 117–124.

    CAS  PubMed  Google Scholar 

  49. Weisel, J.W. 1986. Fibrin assembly. Lateral aggregation and the role of the two pairs of fibrinopeptides. Biophysical Journal 50(6): 1079–1093.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Wojtukiewicz, M.Z., E. Sierko, P. Klement, and J. Rak. 2001. The hemostatic system and angiogenesis in malignancy. Neoplasia 3(5): 371–384.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Davie, E.W., K. Fujikawa, and W. Kisiel. 1991. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 30(43): 10363–10370.

    CAS  PubMed  Google Scholar 

  52. Esmon, C.T. 2000. Regulation of blood coagulation. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology 1477(1–2): 349–360.

    CAS  Google Scholar 

  53. Mann, K.G., K. Brummel-Ziedins, T. Orfeo, and S. Butenas. 2006. Models of blood coagulation. Blood Cells, Molecules, and Diseases 36(2): 108–117.

    CAS  PubMed  Google Scholar 

  54. Mann, K.G. 1999. Biochemistry and physiology of blood coagulation. Thrombosis and Haemostasis 82(2): 165–174.

    CAS  PubMed  Google Scholar 

  55. Jackson, C.M., and Y. Nemerson. 1980. Blood coagulation. Annual Review of Biochemistry 49(1): 765–811.

    CAS  PubMed  Google Scholar 

  56. Zarbock, A., R.K. Polanowska-Grabowska, and K. Ley. 2007. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Reviews 21(2): 99–111.

    CAS  PubMed  Google Scholar 

  57. Kenny, L., P. Baker, and F.G. Cunningham. 2009. Platelets, coagulation, and the liver. Chesley’s hypertension in pregnancy, 3rd edn, 335. New York: Elsevier.

    Google Scholar 

  58. Mosnier, L.O., P. Buijtenhuijs, P.F. Marx, J.C. Meijers, and B.N. Bouma. 2003. Identification of thrombin activatable fibrinolysis inhibitor (TAFI) in human platelets. Blood 101(12): 4844–4846.

    CAS  PubMed  Google Scholar 

  59. Frenette, P.S., R.C. Johnson, R.O. Hynes, and D.D. Wagner. 1995. Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proceedings of the National Academy of Sciences 92(16): 7450–7454.

    CAS  Google Scholar 

  60. Frenette, P.S., C. Moyna, D.W. Hartwell, J.B. Lowe, R.O. Hynes, and D.D. Wagner. 1998. Platelet–endothelial interactions in inflamed mesenteric venules. Blood 91(4): 1318–1324.

    CAS  PubMed  Google Scholar 

  61. Majerus, P. 1987. Platelets. In The molecular basis of blood diseases, ed. G. Stamatoyannopoulos, A.W. Nienhuis, P. Leder, and P. Majerus. Philadelphia: W.B. Saunders Co.

    Google Scholar 

  62. Girma, J.P., D. Meyer, C.L. Verweij, H. Pannekoek, and J.J. Sixma. 1987. Structure–function relationship of human von Willebrand factor. Blood 70(3): 605–611.

    CAS  PubMed  Google Scholar 

  63. Ruggeri, Z.M., and T.S. Zimmerman. 1987. Von Willebrand factor and von Willebrand disease. Blood 70(4): 895–904.

    CAS  PubMed  Google Scholar 

  64. Lopez, J.A., D.W. Chung, K. Fujikawa, F.S. Hagen, E.W. Davie, and G.J. Roth. 1988. The α and β chains of human platelet glycoprotein Ib are both transmembrane proteins containing a leucine-rich amino acid sequence. Proceedings of the National Academy of Sciences of the United States of America 85(7): 2135–2139.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Bennett, J.S., G. Vilaire, and D.B. Cines. 1982. Identification of the fibrinogen receptor on human platelets by photoaffinity labeling. Journal of Biological Chemistry 257(14): 8049–8054.

    CAS  PubMed  Google Scholar 

  66. Savage, B., and Z.M. Ruggeri. 1991. Selective recognition of adhesive sites in surface-bound fibrinogen by glycoprotein IIb–IIIa on nonactivated platelets. Journal of Biological Chemistry 266(17): 11227–11233.

    CAS  PubMed  Google Scholar 

  67. Varga-Szabo, D., A. Braun, and B. Nieswandt. 2009. Calcium signaling in platelets. Journal of Thrombosis and Haemostasis 7(7): 1057–1066.

    CAS  PubMed  Google Scholar 

  68. Bergmeier, W., and L. Stefanini. 2009. Novel molecules in calcium signaling in platelets. Journal of Thrombosis and Haemostasis 7(SUPPL. 1): 187–190.

    CAS  PubMed  Google Scholar 

  69. Rink, T., and S. Sage. 1990. Calcium signaling in human platelets. Annual Review of Physiology 52(1): 431–449.

    CAS  PubMed  Google Scholar 

  70. Neeves, K., D. Illing, and S. Diamond. 2010. Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow. Biophysical Journal 98(7): 1344–1352.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Ferri, F., M. Greco, and M. Rocco. 2001. On the determination of the average molecular weight, radius of gyration, and mass/length ratio of polydisperse solutions of polymerizing rod-like macromolecular monomers by multi-angle static lightscattering. Macromolecular Symposia 162(1): 23–44.

  72. Yeromonahos, C., B. Polack, and F. Caton. 2010. Nanostructure of the fibrin clot. Biophysical Journal 99(7): 2018–2027.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Yang, Z., J.M. Kollman, L. Pandi, and R.F. Doolittle. 2001. Crystal structure of native chicken fibrinogen at 2.7 Å resolution. Biochemistry 40(42): 12515–12523.

    CAS  PubMed  Google Scholar 

  74. Ferry, J.D., and P.R. Morrison. 1947. Preparation and properties of serum and plasma proteins. IX. Human fibrin in the form of an elastic film. Journal of the American Chemical Society 69(2): 400–409.

    CAS  PubMed  Google Scholar 

  75. Fowler, W., R. Hantgan, J. Hermans, and H. Erickson. 1981. Structure of the fibrin protofibril. Proceedings of the National Academy of Sciences 78(8): 4872–4876.

    CAS  Google Scholar 

  76. Clark, R.A. 1996. The molecular and cellular biology of wound repair. New York: Springer.

  77. Piechocka, I.K., R.G. Bacabac, M. Potters, F.C. Mackintosh, and G.H. Koenderink. 2010. Structural hierarchy governs fibrin gel mechanics. Biophysical Journal 98(10): 2281–2289.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Weisel, J.W. 2004. The mechanical properties of fibrin for basic scientists and clinicians. Biophysical Chemistry 112(2-3 SPEC. ISS): 267–276.

    CAS  PubMed  Google Scholar 

  79. Liu, W., L.M. Jawerth, E.A. Sparks, M.R. Falvo, R.R. Hantgan, R. Superfine, S.T. Lord, and M. Guthold. 2006. Fibrin fibers have extraordinary extensibility and elasticity. Science 313(5787): 634.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Brown, A.E.X., R.I. Litvinov, D.E. Discher, P.K. Purohit, and J.W. Weisel. 2009. Multiscale mechanics of fibrin polymer: Gel stretching with protein unfolding and loss of water. Science 325(5941): 741–744.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Shah, J.V., and P.A. Janmey. 1997. Strain hardening of fibrin gels and plasma clots. Rheologica Acta 36(3): 262–268.

    CAS  Google Scholar 

  82. Wen, Q., A. Basu, J.P. Winer, A. Yodh, and P.A. Janmey. 2007. Local and global deformations in a strain-stiffening fibrin gel. New Journal of Physics 9(11): 428.

    Google Scholar 

  83. Kang, H., Q. Wen, P.A. Janmey, J.X. Tang, E. Conti, and F.C. MacKintosh. 2009. Nonlinear elasticity of stiff filament networks: Strain stiffening, negative normal stress, and filament alignment in fibrin gels. Journal of Physical Chemistry B 113(12): 3799–3805.

    CAS  Google Scholar 

  84. Roberts, W.W., L. Lorand, and L.F. Mockros. 1973. Viscoelastic properties of fibrin clots. Biorheology 10(1): 29–42.

    CAS  PubMed  Google Scholar 

  85. Yao, N.Y., R.J. Larsen, and D.A. Weitz. 2008. Probing nonlinear rheology with inertio-elastic oscillations. Journal of Rheology 52(4): 1013–1025.

    CAS  Google Scholar 

  86. Janmey, P.A., E.J. Amis, and J.D. Ferry. 1983. Rheology of fibrin clots—6. Stress relaxation, creep, and differential dynamic modulus of fine clots in large shearing deformations. Journal of Rheology 27(2): 135–153.

    Google Scholar 

  87. Bale, M.D., and J.D. Ferry. 1988. Strain enhancement of elastic modulus in fine fibrin clots. Thrombosis Research 52(6): 565–572.

    CAS  PubMed  Google Scholar 

  88. Gardel, M.L., J.H. Shin, F.C. MacKintosh, L. Mahadevan, P. Matsudaira, and D.A. Weitz. 2004. Elastic behavior of cross-linked and bundled actin networks. Science 304(5675): 1301–1305.

    CAS  PubMed  Google Scholar 

  89. Ryan, E.A., L.F. Mockros, J.W. Weisel, and L. Lorand. 1999. Structural origins of fibrin clot rheology. Biophysical Journal 77(5): 2813–2826.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Xu, J., Y. Tseng, and D. Wirtz. 2000. Strain hardening of actin filament networks: regulation by the dynamic cross-linking protein α-actinin. Journal of Biological Chemistry 275(46): 35886–35892.

    CAS  PubMed  Google Scholar 

  91. Janmey, P.A., M.E. McCormick, S. Rammensee, J.L. Leight, P.C. Georges, and F.C. MacKintosh. 2007. Negative normal stress in semiflexible biopolymer gels. Nature Materials 6(1): 48–51.

    CAS  PubMed  Google Scholar 

  92. Hudson, N.E., J.R. Houser, E.T. O’Brien Iii, R.M. Taylor Ii, R. Superfine, S.T. Lord, and M.R. Falvo. 2010. Stiffening of individual fibrin fibers equitably distributes strain and strengthens networks. Biophysical Journal 98(8): 1632–1640.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Falvo, M.R., D. Millard, E.T. O’Brien Iii, R. Superfine, and S.T. Lord. 2008. Length of tandem repeats in fibrin’s αC region correlates with fiber extensibility. Journal of Thrombosis and Haemostasis 6(11): 1991–1993.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Guthold, M., W. Liu, E.A. Sparks, L.M. Jawerth, L. Peng, M. Falvo, R. Superfine, R.R. Hantgan, and S.T. Lord. 2007. A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers. Cell Biochemistry and Biophysics 49(3): 165–181.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Liu, W., C.R. Carlisle, E.A. Sparks, and M. Guthold. 2010. The mechanical properties of single fibrin fibers. Journal of Thrombosis and Haemostasis 8(5): 1030–1036.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Storm, C., J.J. Pastore, F.C. MacKintosh, T.C. Lubensky, and P.A. Janmey. 2005. Nonlinear elasticity in biological gels. Nature 435(7039): 191–194.

    CAS  PubMed  Google Scholar 

  97. Wolberg, A.S. 2007. Thrombin generation and fibrin clot structure. Blood Reviews 21(3): 131–142.

    CAS  PubMed  Google Scholar 

  98. Wolberg, A.S., and R.A. Campbell. 2008. Thrombin generation, fibrin clot formation and hemostasis. Transfusion and Apheresis Science 38(1): 15–23.

    PubMed Central  PubMed  Google Scholar 

  99. Müller, I., A. Klocke, M. Alex, M. Kotzsch, T. Luther, E. Morgenstern, S. Zieseniss, S. Zahler, K. Preissner, and B. Engelmann. 2003. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. The FASEB Journal 17(3): 476–478.

    Google Scholar 

  100. Banner, D.W., A. D’Arcy, C. Chene, F.K. Winkler, A. Guha, W.H. Konigsberg, Y. Nemerson, and D. Kirchhofer. 1996. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature 380(6569): 41–46.

    CAS  PubMed  Google Scholar 

  101. Hantgan, R.R., G. Hindriks, R.G. Taylor, J.J. Sixma, and P.G. de Groot. 1990. Glycoprotein Ib, von Willebrand factor, and glycoprotein IIb: IIIa are all involved in platelet adhesion to fibrin in flowing whole blood. Blood 76(2): 345–353.

    CAS  PubMed  Google Scholar 

  102. Lages, B., and H.J. Weiss. 1994. Evidence for a role of glycoprotein IIb–IIIa, distinct from its ability to support aggregation, in platelet activation by ionophores in the presence of extracellular divalent cations. Blood 83(9): 2549–2559.

    CAS  PubMed  Google Scholar 

  103. Cierniewski, C.S., J.W. Smith, E.F. Plow, and T. Haas. 1994. Characterization of cation-binding sequences in the platelet integrin GPIIb-IIIa (. alpha. IIb. beta. 3) by terbium luminescence. Biochemistry 33(40): 12238–12246.

    CAS  PubMed  Google Scholar 

  104. Rivas, G., and J. Gonzalez-Rodriguez. 1991. Calcium binding to human platelet integrin GPIIb/IIIa and to its constituent glycoproteins. Effects of lipids and temperature. The Biochemical Journal 276: 35–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Münzer, P., A. Tolios, L. Pelzl, E. Schmid, E.M. Schmidt, B. Walker, H. Fröhlich, O. Borst, M. Gawaz, and F. Lang. 2013. Thrombin-sensitive expression of the store operated Ca2+ channel Orai1 in platelets. Biochemical and Biophysical Research Communications 436(1): 25–30.

    PubMed  Google Scholar 

  106. Curtis, C., K. Brown, R. Credo, R. Domanik, A. Gray, P. Stenberg, and L. Lorand. 1974. Calcium-dependent unmasking of active center cysteine during activation of fibrin stabilizing factor. Biochemistry 13(18): 3774–3780.

    CAS  PubMed  Google Scholar 

  107. Lorand, L., A.J. Gray, K. Brown, R.B. Credo, C.G. Curtis, R.A. Domanik, and P. Stenberg. 1974. Dissociation of the subunit structure of fibrin stabilizing factor during activation of the zymogen. Biochemical and Biophysical Research Communications 56(4): 914–922.

    CAS  PubMed  Google Scholar 

  108. Kitchens, C.S., and T.F. Newcomb. 1979. Factor XIII. Medicine 58(6): 413–429.

    CAS  PubMed  Google Scholar 

  109. Nemerson, Y., and D. Repke. 1985. Tissue factor accelerates the activation of coagulation factor VII: The role of a bifunctional coagulation cofactor. Thrombosis Research 40(3): 351–358.

    CAS  PubMed  Google Scholar 

  110. Rao, L., and S.I. Rapaport. 1988. The effect of platelets upon factor Xa-catalyzed activation of factor VII in vitro. Blood 72(2): 396–401.

    CAS  PubMed  Google Scholar 

  111. Sakai, T., T. Lund-Hansen, L. Paborsky, A. Pedersen, and W. Kisiel. 1989. Binding of human factors VII and VIIa to a human bladder carcinoma cell line (J82). Implications for the initiation of the extrinsic pathway of blood coagulation. Journal of Biological Chemistry 264(17): 9980–9988.

    CAS  PubMed  Google Scholar 

  112. Eaton, D., H. Rodriguez, and G.A. Vehar. 1986. Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry 25(2): 505–512.

    CAS  PubMed  Google Scholar 

  113. Di Scipio, R.G., K. Kurachi, and E.W. Davie. 1978. Activation of human factor IX (Christmas factor). Journal of Clinical Investigation 61(6): 1528.

    PubMed Central  PubMed  Google Scholar 

  114. Lorand, L., and K. Konishi. 1964. Activation of the fibrin stabilizing factor of plasma by thrombin. Archives of Biochemistry and Biophysics 105(1): 58–67.

    CAS  PubMed  Google Scholar 

  115. Naski, M.C., L. Lorand, and J.A. Shafer. 1991. Characterization of the kinetic pathway for fibrin promotion of. alpha.-thrombin-catalyzed activation of plasma factor XIII. Biochemistry 30(4): 934–941.

    CAS  PubMed  Google Scholar 

  116. Kisiel, W., W.M. Canfield, L.H. Ericsson, and E.W. Davie. 1977. Anticoagulant properties of bovine plasma protein C following activation by thrombin. Biochemistry 16(26): 5824–5831.

    CAS  PubMed  Google Scholar 

  117. Marlar, R.A., A.J. Kleiss, and J.H. Griffin. 1982. Mechanism of action of human activated protein C, a thrombin-dependent anticoagulant enzyme. Blood 59(5): 1067–1072.

    CAS  PubMed  Google Scholar 

  118. Vehar, G.A., and E.W. Davie. 1980. Preparation and properties of bovine factor VIII (antihemophilic factor). Biochemistry 19(3): 401–410.

    CAS  PubMed  Google Scholar 

  119. Walker, F.J. 1980. Regulation of activated protein C by a new protein. A possible function for bovine protein S. Journal of Biological Chemistry 255(12): 5521–5524.

    CAS  PubMed  Google Scholar 

  120. Huntington, J.A. 2008. How Na+ activates thrombin—A review of the functional and structural data. Biological Chemistry 389(8): 1025–1035.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Lechtenberg, B.C., S.M.V. Freund, and J.A. Huntington. 2012. An ensemble view of thrombin allostery. Biological Chemistry 393(9): 889–898.

    CAS  PubMed  Google Scholar 

  122. De Candia, E. 2012. Mechanisms of platelet activation by thrombin: a short history. Thrombosis Research 129(3): 250–256.

    PubMed  Google Scholar 

  123. Weiss, U. 2008. Inflammation. Nature 454(7203): 427.

    CAS  PubMed  Google Scholar 

  124. Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454(7203): 428–435.

    CAS  PubMed  Google Scholar 

  125. Feghali, C.A., and T.M. Wright. 1997. Cytokines in acute and chronic inflammation. Frontiers in Bioscience : A Journal and Virtual Library 2: d12–d26.

    CAS  Google Scholar 

  126. Cicala, C., and G. Cirino. 1998. Linkage between inflammation and coagulation: an update on the molecular basis of the crosstalk. Life Sciences 62(20): 1817–1824.

    CAS  PubMed  Google Scholar 

  127. Libby, P., and D.I. Simon. 2001. Inflammation and thrombosis: The clot thickens. Circulation 103(13): 1718–1720.

    CAS  PubMed  Google Scholar 

  128. Gasparyan, A. 2010. Platelets in inflammation and thrombosis. Inflammation & Allergy Drug Targets 9(5): 319.

    CAS  Google Scholar 

  129. Gasparyan, A.Y., L. Ayvazyan, D.P. Mikhailidis, and G.D. Kitas. 2011. Mean platelet volume: a link between thrombosis and inflammation? Current Pharmaceutical Design 17(1): 47–58.

    CAS  PubMed  Google Scholar 

  130. Gasparyan, A., A. Sandoo, A. Stavropoulos-Kalinoglou, and G. Kitas. 2010. Mean platelet volume in patients with rheumatoid arthritis: the effect of anti-TNF-alpha therapy. Rheumatology International 30(8): 1125–1129.

    CAS  PubMed  Google Scholar 

  131. Gasparyan, A.Y., A. Stavropoulos-Kalinoglou, T.E. Toms, K.M. Douglas, and G.D. Kitas. 2010. Association of mean platelet volume with hypertension in rheumatoid arthritis. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy) 9(1): 45–50.

    CAS  Google Scholar 

  132. Gawaz, M. 2004. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovascular Research 61(3): 498–511.

    CAS  PubMed  Google Scholar 

  133. Borst, O., P. Münzer, S. Gatidis, E.M. Schmidt, T. Schönberger, E. Schmid, S.T. Towhid, K. Stellos, P. Seizer, A.E. May, et al. 2012. The inflammatory chemokine CXC motif ligand 16 triggers platelet activation and adhesion via CXC motif receptor 6-dependent phosphatidylinositide 3-kinase/akt signaling. Circulation Research 111(10): 1297–1307.

    CAS  PubMed  Google Scholar 

  134. Gasparyan, A., A. Stavropoulos-Kalinoglou, D. Mikhailidis, K.J. Douglas, and G. Kitas. 2011. Platelet function in rheumatoid arthritis: arthritic and cardiovascular implications. Rheumatology International 31(2): 153–164.

    CAS  PubMed  Google Scholar 

  135. Burstein, S. 1997. Cytokines, platelet production and hemostasis. Platelets 8(2–3): 93–104.

    CAS  PubMed  Google Scholar 

  136. Pendurthi, U.R., D. Alok, and L.V.M. Rao. 1997. Binding of factor VIIa to tissue factor induces alterations in gene expression in human fibroblast cells: up-regulation of poly(A) polymerase. Proceedings of the National Academy of Sciences of the United States of America 94(23): 12598–12603.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Miller, D.L., R. Yaron, and M.J. Yellin. 1998. CD40L–CD40 interactions regulate endothelial cell surface tissue factor and thrombomodulin expression. Journal of Leukocyte Biology 63(3): 373–379.

    CAS  PubMed  Google Scholar 

  138. André, P., K.S. Srinivasa Prasad, C.V. Denis, M. He, J.M. Papalia, R.O. Hynes, D.R. Phillips, and D.D. Wagner. 2002. CD40L stabilizes arterial thrombi by a β3 integrin-dependent mechanism. Nature Medicine 8(3): 247–252.

    PubMed  Google Scholar 

  139. Henn, V., J.R. Slupsky, M. Gräfe, I. Anagnostopoulos, R. Förster, G. Müller-Berghaus, and R.A. Kroczek. 1998. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391(6667): 591–594.

    CAS  PubMed  Google Scholar 

  140. Loppnow, H., R. Bil, S. Hirt, U. Schönbeck, M. Herzberg, K. Werdan, E.T. Rietschel, E. Brandt, and H.D. Flad. 1998. Platelet-derived interleukin-1 induces cytokine production, but not proliferation of human vascular smooth muscle cells. Blood 91(1): 134–141.

    CAS  PubMed  Google Scholar 

  141. Opal, S.M., and C.T. Esmon. 2003. Bench-to-bedside review: Functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Critical Care 7(1): 23–38.

    PubMed Central  PubMed  Google Scholar 

  142. Kuijper, P.H.M., H.I. Gallardo Torres, J.A.M. Van Der Linden, J.W.J. Lammers, J.J. Sixma, L. Koenderman, and J.J. Zwaginga. 1996. Platelet-dependent primary hemostasis promotes selectin- and integrin-mediated neutrophil adhesion to damaged endothelium under flow conditions. Blood 87(8): 3271–3281.

    CAS  PubMed  Google Scholar 

  143. Corken, A., S. Russell, J. Dent, S.R. Post, and J. Ware. 2014. Platelet glycoprotein Ib-IX as a regulator of systemic inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology 34(5): 996–1001.

  144. Petäjä, J. 2011. Inflammation and coagulation. An overview. Thrombosis Research 127(SUPPL. 2): S34–S37.

    PubMed  Google Scholar 

  145. Tracy, R., and E. Bovill. 1995. Hemostasis and risk of ischemic disease: Epidemiologic evidence with emphasis on the elderly. Acute coronary care in the thrombolytic era. 2nd ed, 27–43. St. Louis: Mosby Year Book.

    Google Scholar 

  146. Rauch, U., D. Bonderman, B. Bohrmann, J.J. Badimon, J. Himber, M.A. Riederer, and Y. Nemerson. 2000. Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor. Blood 96(1): 170–175.

    CAS  PubMed  Google Scholar 

  147. Levi, M., and T. Van Der Poll. 2010. Inflammation and coagulation. Critical Care Medicine 38(SUPPL. 2): S26–S34.

    CAS  PubMed  Google Scholar 

  148. Esmon, C.T. 2005. The interactions between inflammation and coagulation. British Journal of Haematology 131(4): 417–430.

    CAS  PubMed  Google Scholar 

  149. Bevers, E.M., P. Comfurius, D.W.C. Dekkers, M. Harmsma, and R.F.A. Zwaal. 1998. Transmembrane phospholipid distribution in blood cells: Control mechanisms and pathophysiological significance. Biological Chemistry 379(8–9): 973–986.

    CAS  PubMed  Google Scholar 

  150. Sims, P.J., T. Wiedmer, C.T. Esmon, H.J. Weiss, and S.J. Shattil. 1989. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: An isolated defect in platelet procoagulant activity. Journal of Biological Chemistry 264(29): 17049–17057.

    CAS  PubMed  Google Scholar 

  151. Conway, E.M., and R.D. Rosenberg. 1988. Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells. Molecular and Cellular Biology 8(12): 5588–5592.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Fukudome, K., and C.T. Esmon. 1994. Identification, cloning, and regulation of a novel endothelial cell protein C/activated protein C receptor. Journal of Biological Chemistry 269(42): 26486–26491.

    CAS  PubMed  Google Scholar 

  153. Takano, S., S. Kimura, S. Ohdama, and N. Aoki. 1990. Plasma thrombomodulin in health and diseases. Blood 76(10): 2024–2029.

    CAS  PubMed  Google Scholar 

  154. Østerud, B. 1998. Tissue factor expression by monocytes: Regulation and pathophysiological roles. Blood Coagulation and Fibrinolysis 9(SUPPL. 1): S9–S14.

    PubMed  Google Scholar 

  155. Neumann, F.J., N. Marx, M. Gawaz, K. Brand, I. Ott, C. Rokitta, C. Sticherling, C. Meinl, A. May, and A. Schömig. 1997. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets. Circulation 95(10): 2387–2394.

    CAS  PubMed  Google Scholar 

  156. Souter, P.J., S. Thomas, A.R. Hubbard, S. Poole, J. Römisch, and E. Gray. 2001. Antithrombin inhibits lipopolysaccharide-induced tissue factor and interleukin-6 production by mononuclear cells, human umbilical vein endothelial cells, and whole blood. Critical Care Medicine 29(1): 134–139.

    CAS  PubMed  Google Scholar 

  157. Zwaal, R.F.A., and A.J. Schroit. 1997. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89(4): 1121–1132.

    CAS  PubMed  Google Scholar 

  158. Levi, M., T. Van Der Poll, and H.R. Büller. 2004. Bidirectional relation between inflammation and coagulation. Circulation 109(22): 2698–2704.

    PubMed  Google Scholar 

  159. Sturn, D.H., N.C. Kaneider, C. Feistritzer, A. Djanani, K. Fukudome, and C.J. Wiedermann. 2003. Expression and function of the endothelial protein C receptor in human neutrophils. Blood 102(4): 1499–1505.

    CAS  PubMed  Google Scholar 

  160. Isobe, H., K. Okajima, M. Uchiba, A. Mizutani, N. Harada, A. Nagasaki, and K. Okabe. 2001. Activated protein C prevents endotoxin-induced hypotension in rats by inhibiting excessive production of nitric oxide. Circulation 104(10): 1171–1175.

    CAS  PubMed  Google Scholar 

  161. Cheng, T., D. Liu, J.H. Griffin, J.A. Fernández, F. Castellino, E.D. Rosen, K. Fukudome, and B.V. Zlokovic. 2003. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nature Medicine 9(3): 338–342.

    CAS  PubMed  Google Scholar 

  162. Joyce, D.E., L. Gelbert, A. Ciaccia, B. DeHoff, and B.W. Grinnell. 2001. Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. Journal of Biological Chemistry 276(14): 11199–11203.

    CAS  PubMed  Google Scholar 

  163. Oelschläger, C., J. Römisch, A. Staubitz, H. Stauss, B. Leithäuser, H. Tillmanns, and H. Hölschermann. 2002. Antithrombin III inhibits nuclear factor κB activation in human monocytes and vascular endothelial cells. Blood 99(11): 4015–4020.

    PubMed  Google Scholar 

  164. Yasui, H., E.C. Gabazza, S. Tamaki, T. Kobayashi, O. Hataji, H. Yuda, S. Shimizu, K. Suzuki, Y. Adachi, and O. Taguchi. 2001. Intratracheal administration of activated protein C inhibits bleomycin-induced lung fibrosis in the mouse. American Journal of Respiratory and Critical Care Medicine 163(7): 1660–1668.

    CAS  PubMed  Google Scholar 

  165. Okajima, K. 2001. Regulation of inflammatory responses by natural anticoagulants. Immunological Reviews 184: 258–274.

    CAS  PubMed  Google Scholar 

  166. Thomas, R.H. 2001. Hypercoagulability syndromes. Archives of Internal Medicine 161(20): 2433–2439.

    CAS  PubMed  Google Scholar 

  167. Chu, A.J. 2005. Tissue factor mediates inflammation. Archives of Biochemistry and Biophysics 440(2): 123–132.

    CAS  PubMed  Google Scholar 

  168. Denko, C.W., and M.W. Whitehouse. 1976. Experimental inflammation induced by naturally occurring microcrystalline calcium salts. The Journal of Rheumatology 3(1): 54–62.

    CAS  PubMed  Google Scholar 

  169. Bach, R., and D.B. Rifkin. 1990. Expression of tissue factor procoagulant activity: Regulation by cytosolic calcium. Proceedings of the National Academy of Sciences 87(18): 6995–6999.

    CAS  Google Scholar 

  170. Palabrica, T., R. Lobb, B.C. Furie, M. Aronovitz, C. Benjamin, Y.-M. Hsu, S.A. Sajer, and B. Furie. 1992. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359: 848–851.

    CAS  PubMed  Google Scholar 

  171. Lorant, D., M. Topham, R. Whatley, R. McEver, T. McIntyre, S. Prescott, and G. Zimmerman. 1993. Inflammatory roles of P-selectin. Journal of Clinical Investigation 92(2): 559.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Lorant, D.E., K.D. Patel, T.M. McIntyre, R.P. McEver, S.M. Prescott, and G.A. Zimmerman. 1991. Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: A juxtacrine system for adhesion and activation of neutrophils. The Journal of Cell Biology 115(1): 223–234.

    CAS  PubMed  Google Scholar 

  173. Mikaelsson, M.E. (1991) The role of calcium in coagulation and anticoagulation. In Coagulation and blood transfusion, eds. Sibinga, C.T.S., Das, P.C., Mannucci, P.M., 26: 29–37. Developments in hematology and immunology. New York: Springer.

  174. Pretorius, E. 2007. The role of platelet and fibrin ultrastructure in identifying disease patterns. Pathophysiology of Haemostasis and Thrombosis 36(5): 251–258.

    CAS  Google Scholar 

  175. Swanepoel, A.C., Lindeque, B.G., Swart, P.J., Abdool, Z., Pretorius, E. (2014) Estrogen causes ultrastructural changes of fibrin networks during the menstrual cycle: A qualitative investigation. Microscopy Research and Technique 77: 594–601.

  176. Swanepoel, A.C., Pretorius E. (2015) Ultrastructural analysis of platelets during three phases of pregnancy: A qualitative and quantitative investigation. Hematology 20: 39–47.

  177. Cooke, R.D. 1974. Calcium-induced dissociation of human plasma factor XIII and the appearance of catalytic activity. The Biochemical Journal 141: 683–691.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Kristiansen, G.K., and M.D. Andersen. 2011. Reversible activation of cellular factor XIII by calcium. Journal of Biological Chemistry 286(11): 9833–9839.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Nielsen, V.G., W.Q. Gurley Jr., and T.M. Burch. 2004. The impact of factor XIII on coagulation kinetics and clot strength determined by thrombelastography. Anesthesia and Analgesia 99(1): 120–123.

    CAS  PubMed  Google Scholar 

  180. Nielsen, V.G., J.K. Kirklin, H. Hoogendoorn, T.C. Ellis, and W.L. Holman. 2007. Thrombelastographic method to quantify the contribution of factor XIII to coagulation kinetics. Blood Coagulation & Fibrinolysis 18(2): 145–150.

    CAS  Google Scholar 

  181. Pretorius, E., H.M. Oberholzer, W.J. Van Der Spuy, A.C. Swanepoel, and P. Soma. 2011. Qualitative scanning electron microscopy analysis of fibrin networks and platelet abnormalities in diabetes. Blood Coagulation and Fibrinolysis 22(6): 463–467.

    CAS  PubMed  Google Scholar 

  182. Löbner, K., Füchtenbusch, M. (2004) Inflammation and diabetes. MMW Fortschritte der Medizin 146(35–36):32-3, 35-6.

  183. Pretorius, E., A.C. Swanepoel, H.M. Oberholzer, W.J. Van Der Spuy, W. Duim, and P.F. Wessels. 2011. A descriptive investigation of the ultrastructure of fibrin networks in thrombo-embolic ischemic stroke. Journal of Thrombosis and Thrombolysis 31(4): 507–513.

    CAS  PubMed  Google Scholar 

  184. Jin, R., G. Yang, and G. Li. 2010. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. Journal of Leukocyte Biology 87(5): 779–789.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Pretorius, E., H.M. Oberholzer, W.J. Van Der Spuy, A.C. Swanepoel, and P. Soma. 2012. Scanning electron microscopy of fibrin networks in rheumatoid arthritis: A qualitative analysis. Rheumatology International 32(6): 1611–1615.

    CAS  PubMed  Google Scholar 

  186. Gasparyan, A.Y., L. Ayvazyan, E. Pretorius, and G.D. Kitas. 2014. Platelets in rheumatic diseases: Friend or foe? Current Pharmaceutical Design 20(4): 552–566.

    CAS  PubMed  Google Scholar 

  187. Epstein, F.H., E.H. Choy, and G.S. Panayi. 2001. Cytokine pathways and joint inflammation in rheumatoid arthritis. New England Journal of Medicine 344(12): 907–916.

    Google Scholar 

  188. Pretorius, E., J. Bester, N. Vermeulen, B. Lipinski, G.S. Gericke, and D.B. Kell. 2014. Profound morphological changes in the erythrocytes and fibrin networks of patients with hemochromatosis or with hyperferritinemia, and their normalization by iron chelators and other agents. PLoS ONE 9(1): e85271.

    PubMed Central  PubMed  Google Scholar 

  189. Wang, L., E.E. Johnson, H.N. Shi, W.A. Walker, M. Wessling-Resnick, and B.J. Cherayil. 2008. Attenuated inflammatory responses in hemochromatosis reveal a role for iron in the regulation of macrophage cytokine translation. The Journal of Immunology 181(4): 2723–2731.

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Pretorius, E. 2012. Ultrastructural changes in platelet membranes due to cigarette smoking. Ultrastructural Pathology 36(4): 239–243.

    PubMed  Google Scholar 

  191. Pretorius, E., H.M. Oberholzer, W.J. Van Der Spuy, and J.H. Meiring. 2010. Smoking and coagulation: The sticky fibrin phenomenon. Ultrastructural Pathology 34(4): 236–239.

    PubMed  Google Scholar 

  192. De Maat, M.P.M., and C. Kluft. 2002. The association between inflammation markers, coronary artery disease and smoking. Vascular Pharmacology 39(3): 137–139.

    PubMed  Google Scholar 

  193. Malerba, M., and P. Montuschi. 2012. Non-invasive biomarkers of lung inflammation in smoking subjects. Current Medicinal Chemistry 19(2): 187–196.

    CAS  PubMed  Google Scholar 

  194. Van Der Vaart, H., D.S. Postma, W. Timens, and N.H.T. Ten Hacken. 2004. Acute effects of cigarette smoke on inflammation and oxidative stress: A review. Thorax 59(8): 713–721.

    PubMed Central  PubMed  Google Scholar 

  195. Pretorius, E., du Plooy, J., Soma, P., Gasparyan, AY. (2014) An ultrastructural analysis of platelets, erythrocytes, white blood cells, and fibrin network in systemic lupus erythematosus. Rheumatology International 34: 1005–1009.

  196. Belmont, H.M., S.B. Abramson, and J.T. Lie. 1996. Pathology and pathogenesis of vascular injury in systemic lupus erythematosus Interactions of inflammatory cells and activated endothelium. Arthritis and Rheumatism 39(1): 9–22.

    CAS  PubMed  Google Scholar 

  197. Pretorius, E., and H.M. Oberholzer. 2009. Ultrastructural changes of platelets and fibrin networks in human asthma: A qualitative case study. Blood Coagulation and Fibrinolysis 20(2): 146–149.

    PubMed  Google Scholar 

  198. Kay, A.B... 1991. Asthma and inflammation. Journal of Allergy and Clinical Immunology 87(5): 893–910.

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Authorship

All three authors made substantial contributions to manuscript in accordance with the ICMJE 2013 authorship criteria.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Albe C. Swanepoel or Etheresia Pretorius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swanepoel, A.C., Nielsen, V.G. & Pretorius, E. Viscoelasticity and Ultrastructure in Coagulation and Inflammation: Two Diverse Techniques, One Conclusion. Inflammation 38, 1707–1726 (2015). https://doi.org/10.1007/s10753-015-0148-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0148-7

KEY WORDS

Navigation