Skip to main content

Advertisement

Log in

Post-shock Mesenteric Lymph Drainage Ameliorates Cellular Immune Function in Rats Following Hemorrhagic Shock

  • Published:
Inflammation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Disturbance of immunity is an important factor to modulate inflammatory responses after severe shock. Post-shock mesenteric lymph (PSML) return plays an adverse role in multiple organ injuries induced by the hemorrhagic shock, and the inflammatory factors are involved in this process. However, whether the PSML can exacerbate immune dysfunctions that modulate inflammatory response to the hemorrhagic shock remains unknown. In the present study, the effects of PSML drainage on the distribution of T lymphocyte subgroup, the release of inflammatory factors, and apoptosis of thymocytes were investigated; the effect of PSML on the specific parameters of cellular immune function was also determined. Results showed that PSML drainage reduced the increased levels of CD3+, CD3 + CD4+, CD4 + CD25+ lymphocytes, IFN-γ, and the ratios of CD3 + CD4+/CD3 + CD4− in blood of the shocked rats at 3 h after resuscitation; PSML drainage also abolished the decreased IL-4 level and restored the higher ratio of IFN-γ/IL-4 to normal levels. Tissue injury, including enlarged intermembrance space and edema with congestion in the medulla, increased apoptotic cells and bax expression, decreased number of cells in the S phase, and bcl-2 expression were observed in the thymus after hemorrhagic shock. PSML drainage reversed these effects. In particular, PSML drainage increased the proliferation index and decreased p53 expression of thymocytes. These results suggest that hyperimmunity occurred at early stages of hemorrhagic shock with resuscitation and that PSML drainage could markedly improve cellular immune function that is responsible for the reduced inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Menger, M.D., and B. Vollmar. 2004. Surgical trauma: hyperinflammation versus immunosuppression? Langenbeck's Archives of Surgery 389(6): 475–484.

    Article  PubMed  Google Scholar 

  2. Catania, R.A., and I.H. Chaudry. 1999. Immunological consequences of trauma and shock. Annals of the Academy of Medicine, Singapore 28(1): 120–132.

    CAS  PubMed  Google Scholar 

  3. Villarroel, J.P., Y. Guan, E. Werlin, M.A. Selak, L.B. Becker, and C.A. Sims. 2013. Hemorrhagic shock and resuscitation are associated with peripheral blood mononuclear cell mitochondrial dysfunction and immunosuppression. Journal of Trauma and Acute Care Surgery 75(1): 24–31.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Yin, Y., Y. Li, and R.A. Mariuzza. 2012. Structural basis for self-recognition by autoimmune T-cell receptors. Immunological Reviews 250(1): 32–48.

    Article  PubMed  Google Scholar 

  5. Geenen, V. 2012. The appearance of the thymus and the integrated evolution of adaptive immune and neuroendocrine systems. Acta Clinica Belgica 67(3): 209–213.

    CAS  PubMed  Google Scholar 

  6. Geenen, V. 2012. Presentation of neuroendocrine self in the thymus: a necessity for integrated evolution of the immune and neuroendocrine systems. Annals of the New York Academy of Sciences 1261: 42–48.

    Article  CAS  PubMed  Google Scholar 

  7. Guan, J., D.D. Jin, L.J. Jin, and Q. Lu. 2002. Apoptosis in organs of rats in early stage after polytrauma combined with shock. Journal of Trauma 52(1): 104–111.

    Article  PubMed  Google Scholar 

  8. Angele, M.K., Y.X. Xu, A. Ayala, M.G. Schwacha, R.K. Catania, W.G. Cioffi, K.I. Bland, and I.H. Chaudry. 1999. Gender dimorphism in trauma-hemorrhage-induced thymocyte apoptosis. Shock 12(4): 316–322.

    Article  CAS  PubMed  Google Scholar 

  9. Murao, Y., K. Isayama, F. Saito, A. Hirakawa, and T. Nakatani. 2009. Effect of hypertonic saline resuscitation on CD4 + CD25+ regulatory T cells and gammadelta T cells after hemorrhagic shock and resuscitation in relation to apoptosis and iNOS. Journal of Trauma 67(5): 975–982.

    Article  PubMed  Google Scholar 

  10. Deitch, E.A. 2012. Gut-origin sepsis: evolution of a concept. The Surgeon 10(6): 350–356.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Deitch, E.A. 2010. Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction. Annals of the New York Academy of Sciences 1207(Suppl 1): E103–111.

    Article  PubMed  Google Scholar 

  12. Fanous, M.Y., A.J. Phillips, and J.A. Windsor. 2007. Mesenteric lymph: the bridge to future management of critical illness. JOP 8(4): 374–399.

    PubMed  Google Scholar 

  13. Niu, C.Y., J.C. Li, Z.G. Zhao, J. Zhang, and X.H. Shao. 2006. Effect of intestinal lymphatic circulation blockage in two-hit rats. World Journal of Gastroenterology 12(36): 5805–5812.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Niu, C.Y., Z.G. Zhao, Y.L. Ye, Y.L. Hou, and Y.P. Zhang. 2010. Mesenteric lymph duct ligation against renal injury in rats after hemorrhagic shock. Renal Failure 32(5): 584–591.

  15. Deitch, E.A. 2001. Role of the gut lymphatic system in multiple organ failure. Current Opinion in Critical Care 7(2): 92–98.

    Article  CAS  PubMed  Google Scholar 

  16. Deitch, E.A., D. Xu, and V.L. Kaise. 2006. Role of the gut in the development of injury- and shock induced SIRS and MODS: the gut-lymph hypothesis, a review. Frontiers in Bioscience 11: 520–528.

    Article  CAS  PubMed  Google Scholar 

  17. Cavriani, G., H.V. Domingos, A.L. Soares, A.G. Trezena, A.P. Ligeiro-Oliveira, R.M. Oliveira-Filho, et al. 2005. Lymphatic system as a path underlying the spread of lung and gut injury after intestinal ischemia/reperfusion in rats. Shock 23(4): 330–336.

    Article  PubMed  Google Scholar 

  18. Umeshappa, C.S., R.H. Nanjundappa, Y. Xie, A. Freywald, Q. Xu, and J. Xiang. 2013. Differential requirements of CD4(+) T-cell signals for effector cytotoxic T-lymphocyte (CTL) priming and functional memory CTL development at higher CD8(+) T-cell precursor frequency. Immunology 138(4): 298–306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sokke Umeshappa, C., R. Hebbandi Nanjundappa, Y. Xie, A. Freywald, Y. Deng, H. Ma, et al. 2012. CD154 and IL-2 signaling of CD4+ T cells play a critical role in multiple phases of CD8+ CTL responses following adenovirus vaccination. PLoS One 7(10): e47004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bobat, S., A. Flores-Langarica, J. Hitchcock, J.L. Marshall, R.A. Kingsley, M. Goodall, et al. 2011. Soluble flagellin, FliC, induces an Ag-specific Th2 response, yet promotes T-bet-regulated Th1 clearance of Salmonella typhimurium infection. European Journal of Immunology 41(6): 1606–1618.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, Y., F. Jiao, Y. Qiu, W. Li, F. Lao, G. Zhou, et al. 2009. The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity. Biomaterials 30(23–24): 3934–3945.

    Article  CAS  PubMed  Google Scholar 

  22. Qin, Q., P. Liu, L. Liu, R. Wang, N. Yan, J. Yang, et al. 2012. The increased but non-predominant expression of Th17- and Th1-specific cytokines in Hashimoto’s thyroiditis but not in Graves' disease. Brazilian Journal of Medical and Biological Research 45(12): 1202–1208.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Perrella, A., L. Vitiello, L. Atripaldi, C. Sbreglia, S. Grattacaso, P. Bellopede, et al. 2008. Impaired function of CD4+/CD25+ T regulatory lymphocytes characterizes the self-limited hepatitis A virus infection. Journal of Gastroenterology and Hepatology 23(7Pt2): e105–10.

    Article  PubMed  Google Scholar 

  24. Calleja, S., M. Cordero-Coma, E. Rodriguez, M. Llorente, M. Franco, and Ruiz de Morales JG. 2012. Adalimumab specifically induces CD3(+) CD4(+) CD25(high) Foxp3(+) CD127(-) T-regulatory cells and decreases vascular endothelial growth factor plasma levels in refractory immuno-mediated uveitis: a non-randomized pilot intervention study. Eye (London, England) 26(3): 468–477.

    Article  CAS  Google Scholar 

  25. Daniel, V., M. Sadeghi, H. Wang, and G. Opelz. 2011. CD4 + CD25 + Foxp3 + IFN-γ + human induced T regulatory cells are induced by interferon-γ and suppress alloresponses nonspecifically. Human Immunology 72(9): 699–707.

    Article  CAS  PubMed  Google Scholar 

  26. Rodrigues-Mascarenhas, S., A. Da Silva de Oliveira, N.D. Amoedo, O.R. Affonso-Mitidieri, F.D. Rumjanek, and V.M. Rumjanek. 2009. Modulation of the immune system by ouabain. Annals of the New York Academy of Sciences 1153: 153–163.

    Article  CAS  PubMed  Google Scholar 

  27. Xu, Y.X., M.W. Wichmann, A. Ayala, W.G. Cioffi, and I.H. Chaudry. 1997. Trauma-hemorrhage induces increased thymic apoptosis while decreasing IL-3 release and increasing GM-CSF. Journal of Surgical Research 68(1): 24–30.

    Article  CAS  PubMed  Google Scholar 

  28. Bini, R., R. Cursio, N. Belhacene, J. Giudicelli, B. Ferruà, G. Olivero, et al. 2007. Effect of caspase inhibition on thymic apoptosis in hemorrhagic shock. Journal of Investigative Surgery 20(2): 97–103.

    Article  PubMed  Google Scholar 

  29. Cakir, E., A. Yilmaz, F. Demirag, S. Oguztuzun, S. Sahin, U.E. Yazici, et al. 2011. Prognostic significance of micropapillary pattern in lung adenocarcinoma and expression of apoptosis-related markers: caspase-3, bcl-2, and p53. APMIS 119(9): 574–580.

    Article  PubMed  Google Scholar 

  30. Stegh, A.H., and R.A. DePinho. 2011. Beyond effector caspase inhibition: Bcl2L12 neutralizes p53 signaling in glioblastoma. Cell Cycle 10(1): 33–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Walia, V., S. Kakar, and R. Elble. 2011. Micromanagement of the mitochondrial apoptotic pathway by p53. Frontiers in Bioscience 16: 749–758.

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

No benefits in any form have been received or will be received from a commercial association related directly or indirectly to the subject of this article. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Yu Niu.

Additional information

Hua Liu and Zi-Gang Zhao contribute to this work equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhao, ZG., Xing, LQ. et al. Post-shock Mesenteric Lymph Drainage Ameliorates Cellular Immune Function in Rats Following Hemorrhagic Shock. Inflammation 38, 584–594 (2015). https://doi.org/10.1007/s10753-014-9965-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9965-3

KEY WORDS

Navigation