Skip to main content

Advertisement

Log in

Orientin Inhibits High Glucose-Induced Vascular Inflammation In Vitro and In Vivo

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Vascular inflammation plays a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Orientin, a C-glycosyl flavonoid, is known to have anxiolytic and antioxidative activity. In this study, we assessed whether orientin can suppress vascular inflammation induced by high glucose (HG) in human umbilical vein endothelial cells (HUVECs) and mice. Our data indicate that HG markedly increased vascular permeability, monocyte adhesion, the expression of cell adhesion molecules (CAMs), the formation of reactive oxygen species (ROS), and the activation of nuclear factor kappa B (NF-κB). Remarkably, the vascular inflammatory effects of HG were attenuated by pretreatment with orientin. Since vascular inflammation induced by HG is critical in the development of diabetic complications, our results suggest that orientin may have significant benefits in the treatment of diabetic complications and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Whiting, D.R., L. Guariguata, C. Weil, and J. Shaw. 2011. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice 94: 311–321.

    Article  PubMed  Google Scholar 

  2. Grundy, S.M., I.J. Benjamin, G.L. Burke, et al. 1999. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100: 1134–1146.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas, J.E., and J.M. Foody. 2007. The pathophysiology of cardiovascular disease in diabetes mellitus and the future of therapy. Journal of the Cardiometabolic Syndrome 2: 108–113.

    Article  PubMed  Google Scholar 

  4. Roglic, G., N. Unwin, P.H. Bennett, et al. 2005. The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care 28: 2130–2135.

    Article  PubMed  Google Scholar 

  5. Rubino, F., and M. Gagner. 2002. Potential of surgery for curing type 2 diabetes mellitus. Annals of Surgery 236: 554–559.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Day, C. 1998. Traditional plant treatments for diabetes mellitus: pharmaceutical foods. The British Journal of Nutrition 80: 5–6.

    Article  CAS  PubMed  Google Scholar 

  7. Li, G.Q., A. Kam, K.H. Wong, et al. 2012. Herbal medicines for the management of diabetes. Advances in Experimental Medicine and Biology 771: 396–413.

    PubMed  Google Scholar 

  8. Kumar, S., and A.K. Pandey. 2013. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013: 162750.

    PubMed Central  PubMed  Google Scholar 

  9. Dietrych-Szostak, D., and W. Oleszek. 1999. Effect of processing on the flavonoid content in buckwheat (Fagopyrum esculentum Moench) grain. Journal of Agricultural and Food Chemistry 47: 4384–4387.

    Article  CAS  PubMed  Google Scholar 

  10. Soulimani, R., C. Younos, S. Jarmouni, D. Bousta, R. Misslin, and F. Mortier. 1997. Behavioural effects of Passiflora incarnata L. and its indole alkaloid and flavonoid derivatives and maltol in the mouse. Journal of Ethnopharmacology 57: 11–20.

    Article  CAS  PubMed  Google Scholar 

  11. Li, Y.L., S.C. Ma, Y.T. Yang, S.M. Ye, and P.P. But. 2002. Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. Journal of Ethnopharmacology 79: 365–368.

    Article  CAS  PubMed  Google Scholar 

  12. Budzianowski, J., G. Pakulski, and J. Robak. 1991. Studies on antioxidative activity of some C-glycosylflavones. Polish Journal of Pharmacology and Pharmacy 43: 395–401.

    CAS  PubMed  Google Scholar 

  13. Lee, W., S.K. Ku, and J.S. Bae. 2013. Emodin-6-O-beta-d-glucoside down-regulates endothelial protein C receptor shedding. Archives of Pharmacal Research 36: 1160–1165.

    Article  CAS  PubMed  Google Scholar 

  14. Bae, J.S., and A.R. Rezaie. 2013. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Reports 46: 544–549.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kim, T.H., S.K. Ku, I.C. Lee, and J.S. Bae. 2012. Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells. BMB Reports 45: 200–205.

    Article  CAS  PubMed  Google Scholar 

  16. Bae, J.S., W. Lee, and A.R. Rezaie. 2012. Polyphosphate elicits proinflammatory responses that are counteracted by activated protein C in both cellular and animal models. J Thromb Haemost 10: 1145–1151.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lee, J.D., J.E. Huh, G. Jeon, et al. 2009. Flavonol-rich RVHxR from Rhus verniciflua stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritic fibroblast-like synovial cells and in vivo models. International Immunopharmacology 9: 268–276.

    Article  CAS  PubMed  Google Scholar 

  18. Bae, J.S., W. Lee, J.O. Nam, J.E. Kim, S.W. Kim, and I.S. Kim. 2014. Transforming growth factor beta-induced protein promotes severe vascular inflammatory responses. American Journal of Respiratory and Critical Care Medicine 189: 779–786.

    Article  PubMed  Google Scholar 

  19. Lee, W., S.K. Ku, D. Lee, T. Lee, and J.S. Bae. 2014. Emodin-6-O-beta-d-glucoside inhibits high-glucose-induced vascular inflammation. Inflammation 37: 306–313.

    Article  CAS  PubMed  Google Scholar 

  20. Mackman, N., K. Brand, and T.S. Edgington. 1991. Lipopolysaccharide-mediated transcriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. The Journal of Experimental Medicine 174: 1517–1526.

    Article  CAS  PubMed  Google Scholar 

  21. Laakso, M. 1999. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 48: 937–942.

    Article  CAS  PubMed  Google Scholar 

  22. Wardle, E.N. 1994. Vascular permeability in diabetics and implications for therapy. Diabetes Research and Clinical Practice 23: 135–139.

    Article  CAS  PubMed  Google Scholar 

  23. Hamuro, M., J. Polan, M. Natarajan, and S. Mohan. 2002. High glucose induced nuclear factor kappa B mediated inhibition of endothelial cell migration. Atherosclerosis 162: 277–287.

    Article  CAS  PubMed  Google Scholar 

  24. Morigi, M., S. Angioletti, B. Imberti, et al. 1998. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. The Journal of Clinical Investigation 101: 1905–1915.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Boisvert, W.A. 2004. Modulation of atherogenesis by chemokines. Trends in Cardiovascular Medicine 14: 161–165.

    Article  CAS  PubMed  Google Scholar 

  26. Dunlop, M. 2000. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney International. Supplement 77: S3–S12.

    Article  CAS  PubMed  Google Scholar 

  27. Han, H.J., Y.J. Lee, S.H. Park, J.H. Lee, and M. Taub. 2005. High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells. American Journal of Physiology. Renal Physiology 288: F988–F996.

    Article  CAS  PubMed  Google Scholar 

  28. Rimbach, G., G. Valacchi, R. Canali, and F. Virgili. 2000. Macrophages stimulated with IFN-gamma activate NF-kappa B and induce MCP-1 gene expression in primary human endothelial cells. Molecular Cell Biology Research Communications 3: 238–242.

    Article  CAS  PubMed  Google Scholar 

  29. Uemura, S., H. Matsushita, W. Li, et al. 2001. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circulation Research 88: 1291–1298.

    Article  CAS  PubMed  Google Scholar 

  30. Kannel, W.B., and D.L. McGee. 1979. Diabetes and cardiovascular disease. The Framingham study. JAMA 241: 2035–2038.

    Article  CAS  PubMed  Google Scholar 

  31. Nannipieri, M., L. Rizzo, A. Rapuano, A. Pilo, G. Penno, and R. Navalesi. 1995. Increased transcapillary escape rate of albumin in microalbuminuric type II diabetic patients. Diabetes Care 18: 1–9.

    Article  CAS  PubMed  Google Scholar 

  32. Tooke, J.E. 1995. Microvascular function in human diabetes. A physiological perspective. Diabetes 44: 721–726.

    Article  CAS  PubMed  Google Scholar 

  33. Gerrity, R.G. 1981. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. The American Journal of Pathology 103: 181–190.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Esposito, C., G. Fasoli, A.R. Plati, et al. 2001. Long-term exposure to high glucose up-regulates VCAM-induced endothelial cell adhesiveness to PBMC. Kidney International 59: 1842–1849.

    Article  CAS  PubMed  Google Scholar 

  35. Lopes-Virella, M.F., and G. Virella. 1992. Immune mechanisms of atherosclerosis in diabetes mellitus. Diabetes 41(Suppl 2): 86–91.

    Article  PubMed  Google Scholar 

  36. Bae, J.S. 2012. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Archives of Pharmacal Research 35: 1511–1523.

    Article  CAS  PubMed  Google Scholar 

  37. Kado, S., T. Wakatsuki, M. Yamamoto, and N. Nagata. 2001. Expression of intercellular adhesion molecule-1 induced by high glucose concentrations in human aortic endothelial cells. Life Sciences 68: 727–737.

    Article  CAS  PubMed  Google Scholar 

  38. Hansson, G.K., and P. Libby. 2006. The immune response in atherosclerosis: a double-edged sword. Nature Reviews. Immunology 6: 508–519.

    Article  CAS  PubMed  Google Scholar 

  39. Inoguchi, T., P. Li, F. Umeda, et al. 2000. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49: 1939–1945.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIP) (Grant No. 2013-067053).

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Sup Bae.

Additional information

Sae-Kwang Ku and Soyoung Kwak contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ku, SK., Kwak, S. & Bae, JS. Orientin Inhibits High Glucose-Induced Vascular Inflammation In Vitro and In Vivo . Inflammation 37, 2164–2173 (2014). https://doi.org/10.1007/s10753-014-9950-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9950-x

KEY WORDS

Navigation