Skip to main content

Advertisement

Log in

FTY720, a Sphingosine-1 Phosphate Receptor Modulator, Improves Liver Fibrosis in a Mouse Model by Impairing the Motility of Bone Marrow-Derived Mesenchymal Stem Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

FTY720 is a novel immunosuppressant that modulates sphingosine 1-phosphate (S1P) receptors for the treatment of several diseases. Several hallmarks of liver fibrosis are influenced by S1P, and the interference of S1P signaling by treatment with FTY720 results in beneficial effects in various animal models of fibrosis. However, whether these treatment strategies suppress liver fibrosis progression is incompletely understood. Here, we investigated the effects and mechanisms by which FTY720 improves liver fibrosis in the carbon tetrachloride (CCl4)-induced mouse model. FTY720 treatment significantly attenuated the expression of fibrotic markers in the injured liver of both wild-type and SCID-beige mice. The migration of bone marrow-derived mesenchymal stem cells (BMSCs) to circulation, and subsequently the injured liver, was suppressed by FTY720. Furthermore, in vitro, phosphorylated-FTY720 blocked the migration of BMSCs mediated by S1P. Thus, FTY720 is an effective therapy for liver fibrosis via the suppression of BMSC migration in the CCl4-induced mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brinkmann, V., A. Billich, T. Baumruker, P. Heining, R. Schmouder, G. Francis, et al. 2010. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nature Reviews Drug Discovery 9(11): 883–897.

    Article  CAS  PubMed  Google Scholar 

  2. Aktas, O., P. Kury, B. Kieseier, and H.P. Hartung. 2010. Fingolimod is a potential novel therapy for multiple sclerosis. Nature Reviews Neurology 6(7): 373–382.

    Article  CAS  PubMed  Google Scholar 

  3. Zemann, B., B. Kinzel, M. Muller, R. Reuschel, D. Mechtcheriakova, N. Urtz, et al. 2006. Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood 107(4): 1454–1458.

    Article  CAS  PubMed  Google Scholar 

  4. Mandala, S., R. Hajdu, J. Bergstrom, E. Quackenbush, J. Xie, J. Milligan, et al. 2002. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296(5566): 346–349.

    Article  CAS  PubMed  Google Scholar 

  5. Brinkmann, V., M.D. Davis, C.E. Heise, R. Albert, S. Cottens, R. Hof, et al. 2002. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. Journal of Biological Chemistry 277(24): 21453–21457.

    Article  CAS  PubMed  Google Scholar 

  6. Matloubian, M., C.G. Lo, G. Cinamon, M.J. Lesneski, Y. Xu, V. Brinkmann, et al. 2004. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427(6972): 355–360.

    Article  CAS  PubMed  Google Scholar 

  7. Graeler, M., G. Shankar, and E.J. Goetzl. 2002. Cutting edge: suppression of T cell chemotaxis by sphingosine 1-phosphate. Journal of Immunology 169(8): 4084–4087.

    Article  CAS  Google Scholar 

  8. Pappu, R., S.R. Schwab, I. Cornelissen, J.P. Pereira, J.B. Regard, Y. Xu, et al. 2007. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316(5822): 295–298.

    Article  CAS  PubMed  Google Scholar 

  9. Schwab, S.R., J.P. Pereira, M. Matloubian, Y. Xu, Y. Huang, and J.G. Cyster. 2005. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309(5741): 1735–1739.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, W., M. Zi, H. Tsui, S.K. Chowdhury, L. Zeef, Q.J. Meng, et al. 2013. A novel immunomodulator, FTY-720 reverses existing cardiac hypertrophy and fibrosis from pressure overload by targeting NFAT (nuclear factor of activated T-cells) signaling and periostin. Circulation Heart Failure 6(4): 833–844.

    Article  CAS  PubMed  Google Scholar 

  11. Ni, H.F., J.F. Chen, M.H. Zhang, M.M. Pan, J.D. Zhang, H. Liu, et al. 2013. FTY720 attenuates tubulointerstitial inflammation and fibrosis in subtotally nephrectomized rats. Renal Failure 35(7): 996–1004.

    Article  CAS  PubMed  Google Scholar 

  12. Ni, H., J. Chen, M. Pan, M. Zhang, J. Zhang, P. Chen, et al. 2013. FTY720 prevents progression of renal fibrosis by inhibiting renal microvasculature endothelial dysfunction in a rat model of chronic kidney disease. Journal of Molecular Histology 44(6): 693–703.

    Article  CAS  PubMed  Google Scholar 

  13. Friedman, S.L. 2000. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. Journal of Biological Chemistry 275(4): 2247–2250.

    Article  CAS  PubMed  Google Scholar 

  14. Friedman, S.L. 2008. Mechanisms of hepatic fibrogenesis. Gastroenterology 134(6): 1655–1669.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bataller, R., and D.A. Brenner. 2005. Liver fibrosis. Journal of Clinical Investigation 115(2): 209–218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Russo, F.P., M.R. Alison, B.W. Bigger, E. Amofah, A. Florou, F. Amin, et al. 2006. The bone marrow functionally contributes to liver fibrosis. Gastroenterology 130(6): 1807–1821.

    Article  PubMed  Google Scholar 

  17. Watterson, K.R., D.A. Lanning, R.F. Diegelmann, and S. Spiegel. 2007. Regulation of fibroblast functions by lysophospholipid mediators: potential roles in wound healing. Wound Repair and Regeneration 15(5): 607–616.

    Article  PubMed  Google Scholar 

  18. Li, C., Y. Kong, H. Wang, S. Wang, H. Yu, X. Liu, et al. 2009. Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. Journal of Hepatology 50(6): 1174–1183.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, L., N. Chang, X. Liu, Z. Han, T. Zhu, C. Li, et al. 2012. Bone marrow-derived mesenchymal stem cells differentiate to hepatic myofibroblasts by transforming growth factor-β1 via sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis. American Journal of Pathology 181(1): 85–97.

    Article  CAS  PubMed  Google Scholar 

  20. Man, K., K.T. Ng, T.K. Lee, C.M. Lo, C.K. Sun, X.L. Li, et al. 2005. FTY720 attenuates hepatic ischemia-reperfusion injury in normal and cirrhotic livers. American Journal of Transplantation 5(1): 40–49.

    Article  CAS  PubMed  Google Scholar 

  21. Zeng, X., T. Wang, C. Zhu, Y. Ye, B. Song, X. Lai, et al. 2012. FTY720 mediates activation suppression and G(0)/G (1) cell cycle arrest in a concanavalin A-induced mouse lymphocyte pan-activation model. Inflammation Research 61(6): 623–634.

    Article  CAS  PubMed  Google Scholar 

  22. Constandinou, C., N. Henderson, and J.P. Iredale. 2005. Modeling liver fibrosis in rodents. Methods in Molecular Medicine 117: 237–250.

    PubMed  Google Scholar 

  23. Iredale, J.P. 2007. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. Journal of Clinical Investigation 117(3): 539–548.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Liu, K.X., Y. Kato, M. Yamazaki, O. Higuchi, T. Nakamura, and Y. Sugiyama. 1993. Decrease in the hepatic-clearance of hepatocyte growth-factor in carbon tetrachloride-intoxicated rats. Hepatology 17(4): 651–660.

    Article  CAS  PubMed  Google Scholar 

  25. Johnston, D.E., and C. Kroening. 1998. Mechanism of early carbon tetrachloride toxicity in cultured rat hepatocytes. Pharmacology and Toxicology 83(6): 231–239.

    Article  CAS  PubMed  Google Scholar 

  26. Luster, M.I., P.P. Simeonova, R.M. Gallucci, A. Bruccoleri, M.E. Blazka, and B. Yucesoy. 2001. Role of inflammation in chemical-induced hepatotoxicity. Toxicology Letters 120(1–3): 317–321.

    Article  CAS  PubMed  Google Scholar 

  27. Luster, M.I., P.P. Simeonova, R.M. Gallucci, J.M. Matheson, and B. Yucesoy. 2000. Immunotoxicology: role of inflammation in chemical-induced hepatotoxicity. International Journal of Immunopharmacology 22(12): 1143–1147.

    Article  CAS  PubMed  Google Scholar 

  28. Yamakawa, Y., T. Doi, K. Kubota, H. Okayachi, N. Kudo, and Y. Kawashima. 2000. Modification of carbon tetrachloride-induced hepatotoxicity by clofibric acid in rats. Journal of Health Science 46(2): 132–141.

    Article  CAS  Google Scholar 

  29. Marques, T.G., E. Chaib, J.H. da Fonseca, A.C. Lourenco, F.D. Silva, M.A. Ribeiro Jr., et al. 2012. Review of experimental models for inducing hepatic cirrhosis by bile duct ligation and carbon tetrachloride injection. Acta Cirúrgica Brasileira 27(8): 589–594.

    Article  PubMed  Google Scholar 

  30. Raetsch, C., J.D. Jia, G. Boigk, M. Bauer, E.G. Hahn, E.O. Riecken, et al. 2002. Pentoxifylline downregulates profibrogenic cytokines and procollagen I expression in rat secondary biliary fibrosis. Gut 50(2): 241–247.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Peters, H., S. Martini, Y. Wang, F. Shimizu, H. Kawachi, S. Kramer, et al. 2004. Selective lymphocyte inhibition by FTY720 slows the progressive course of chronic anti-thy 1 glomerulosclerosis. Kidney International 66(4): 1434–1443.

    Article  CAS  PubMed  Google Scholar 

  32. Delbridge, M.S., B.M. Shrestha, A.T. Raftery, A.M. El Nahas, and J. Haylor. 2007. FTY720 reduces extracellular matrix expansion associated with ischemia-reperfusion induced injury. Transplantation Proceedings 39(10): 2992–2996.

    Article  CAS  PubMed  Google Scholar 

  33. Keller, C.D., P. Rivera Gil, M. Tolle, M. van der Giet, J. Chun, H.H. Radeke, et al. 2007. Immunomodulator FTY720 induces myofibroblast differentiation via the lysophospholipid receptor S1P3 and Smad3 signaling. American Journal of Pathology 170(1): 281–292.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sobel, K., K. Menyhart, N. Killer, B. Renault, Y. Bauer, R. Studer, et al. 2013. Sphingosine 1-phosphate (S1P) receptor agonists mediate pro-fibrotic responses in normal human lung fibroblasts via S1P2 and S1P3 receptors and Smad-independent signaling. Journal of Biological Chemistry 288(21): 14839–14851.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Brunati, A.M., E. Tibaldi, A. Carraro, E. Gringeri, F. D'Amico, A. Toninello, et al. 2008. Cross-talk between PDGF and S1P signalling elucidates the inhibitory effect and potential antifibrotic action of the immunomodulator FTY720 in activated HSC-cultures. BBA Molecular Cell Research 1783(3): 347–359.

    CAS  PubMed  Google Scholar 

  36. Yamanaka, M., D. Shegogue, H. Pei, S. Bu, A. Bielawska, J. Bielawski, et al. 2004. Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-β and mediates TIMP-1 up-regulation. Journal of Biological Chemistry 279(52): 53994–54001.

    Article  CAS  PubMed  Google Scholar 

  37. Kono, Y., T. Nishiuma, Y. Nishimura, Y. Kotani, T. Okada, S. Nakamura, et al. 2007. Sphingosine kinase 1 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-β1. American Journal of Respiratory Cell and Molecular Biology 37(4): 395–404.

    Article  CAS  PubMed  Google Scholar 

  38. Miller, A.V., S.E. Alvarez, S. Spiegel, and D.A. Lebman. 2008. Sphingosine kinases and sphingosine-1-phosphate are critical for transforming growth factor β-induced extracellular signal-regulated kinase 1 and 2 activation and promotion of migration and invasion of esophageal cancer cells. Molecular and Cellular Biology 28(12): 4142–4151.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Donati, C., F. Cencetti, C. De Palma, E. Rapizzi, S. Brunelli, G. Cossu, et al. 2009. TGFβ protects mesoangioblasts from apoptosis via sphingosine kinase-1 regulation. Cellular Signalling 21(2): 228–236.

    Article  CAS  PubMed  Google Scholar 

  40. Gellings Lowe, N., J.S. Swaney, K.M. Moreno, and R.A. Sabbadini. 2009. Sphingosine-1-phosphate and sphingosine kinase are critical for transforming growth factor-β-stimulated collagen production by cardiac fibroblasts. Cardiovascular Research 82(2): 303–312.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Cencetti, F., C. Bernacchioni, P. Nincheri, C. Donati, and P. Bruni. 2010. Transforming growth factor-β1 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/S1P3 axis. Molecular Biology of the Cell 21(6): 1111–1124.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lebman, D.A., and S. Spiegel. 2008. Thematic review series: Sphingolipids. Cross-talk at the crossroads of sphingosine-1-phosphate, growth factors, and cytokine signaling. Journal of Lipid Research 49(7): 1388–1394.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Higashiyama, R., T. Moro, S. Nakao, K. Mikami, H. Fukumitsu, Y. Ueda, et al. 2009. Negligible contribution of bone marrow-derived cells to collagen production during hepatic fibrogenesis in mice. Gastroenterology 137(4): 1459–1466. e1.

    Article  CAS  PubMed  Google Scholar 

  44. Terai, S., T. Ishikawa, K. Omori, K. Aoyama, Y. Marumoto, Y. Urata, et al. 2006. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 24(10): 2292–2298.

    Article  CAS  PubMed  Google Scholar 

  45. Spiegel, S., D. English, and S. Milstien. 2002. Sphingosine 1-phosphate signaling: providing cells with a sense of direction. Trends in Cell Biology 12(5): 236–242.

    Article  CAS  PubMed  Google Scholar 

  46. Meriane, M., S. Duhamel, L. Lejeune, J. Galipeau, and B. Annabi. 2006. Cooperation of matrix metalloproteinases with the RhoA/Rho kinase and mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase signaling pathways is required for the sphingosine-1-phosphate-induced mobilization of marrow-derived stromal cells. Stem Cells 24(11): 2557–2565.

    Article  CAS  PubMed  Google Scholar 

  47. Jaganathan, B.G., B. Ruester, L. Dressel, S. Stein, M. Grez, E. Seifried, et al. 2007. Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells 25(8): 1966–1974.

    Article  CAS  PubMed  Google Scholar 

  48. Paik, J.H., S. Chae, M.J. Lee, S. Thangada, and T. Hla. 2001. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of αvβ3- and β1-containing integrins. Journal of Biological Chemistry 276(15): 11830–11837.

    Article  CAS  PubMed  Google Scholar 

  49. Okamoto, H., N. Takuwa, T. Yokomizo, N. Sugimoto, S. Sakurada, H. Shigematsu, et al. 2000. Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Molecular and Cellular Biology 20(24): 9247–9261.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Sugimoto, N., N. Takuwa, H. Okamoto, S. Sakurada, and Y. Takuwa. 2003. Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform. Molecular and Cellular Biology 23(5): 1534–1545.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sanna, M.G., J. Liao, E. Jo, C. Alfonso, M.Y. Ahn, M.S. Peterson, et al. 2004. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. Journal of Biological Chemistry 279(14): 13839–13848.

    Article  CAS  PubMed  Google Scholar 

  52. Goparaju, S.K., P.S. Jolly, K.R. Watterson, M. Bektas, S. Alvarez, S. Sarkar, et al. 2005. The S1P2 receptor negatively regulates platelet-derived growth factor-induced motility and proliferation. Molecular and Cellular Biology 25(10): 4237–4249.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Li, C., X. Jiang, L. Yang, X. Liu, S. Yue, and L. Li. 2009. Involvement of sphingosine 1-phosphate (SIP)/S1P3 signaling in cholestasis-induced liver fibrosis. American Journal of Pathology 175(4): 1464–1472.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Lingsong Li for his scientific advice. This work was supported through the Grants 863 Program (2009DFB30300) from the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaxian Kong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Absolute number of circulating BMSCs during liver fibrogenesis. Mice were induced by CCl4 administration for 4 weeks, with or without FTY720 treatment. The number of circulating BMSCs at different time points after OO or CCl4 injection, with or without FTY720 treatment. Data are presented as the mean ± SEM. *P < 0.05 vs. CCl4-treated alone (n = 16 per group). (JPEG 643 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, Y., Wang, H., Wang, S. et al. FTY720, a Sphingosine-1 Phosphate Receptor Modulator, Improves Liver Fibrosis in a Mouse Model by Impairing the Motility of Bone Marrow-Derived Mesenchymal Stem Cells. Inflammation 37, 1326–1336 (2014). https://doi.org/10.1007/s10753-014-9877-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9877-2

KEY WORDS

Navigation