Skip to main content

Advertisement

Log in

IL-1β Upregulates IL-8 Production in Human Müller Cells Through Activation of the p38 MAPK and ERK1/2 Signaling Pathways

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Diabetic retinopathy shares some similarity with chronic inflammation and Müller cells dysfunction may play an important role in its initiation and progression since these cells are thought to be a major source of inflammatory factors. The goal of this study was to examine the effect of cytokines on human retinal Müller cells and to understand the underlying signal transduction pathways regulating interleukin-8 (IL-8) expression. In this study, human MIO-M1 cells were treated with interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-8, vascular endothelial growth factor (VEGF), interferon-gamma (IFN-γ), glucose, or mannitol, followed by examination of their IL-8 protein and mRNA levels by Western blotting and PCR, respectively. After treatment with IL-1β, the levels of phosphorylated p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3) were measured. IL-8 was also measured by Western blotting and ELISA following Müller cell culture with IL-1β and specific inhibitors of the p38 MAPK, ERK1/2, JNK, or JAK2 pathways. The results showed that IL-1β was a potent inducer of IL-8 expression in MIO-M1 cells, although a relatively small increase was induced by TNF-α. IL-6, IL-8, VEGF, and IFN-γ did not modify IL-8 expression. Increase of IL-8 expression was accompanied by a significant increased phosphorylation of p38 MAPK, ERK, and JNK, but not of JAK2 and STAT3. Furthermore, inhibitors of p38 MAPK and MEK1/2, but not for JNK and JAK2, significantly inhibited IL-8 expression. In conclusion, IL-1β potently stimulates IL-8 expression in Müller cells mainly through the p38 MAPK and ERK1/2 pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Schroder, S., W. Palinski, and G.W. Schmid-Schonbein. 1991. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. The American Journal of Pathology 139: 81–100.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Mackinnon, J.R., R.M. Knott, and J.V. Forrester. 2004. Altered L-selectin expression in lymphocytes and increased adhesion to endothelium in patients with diabetic retinopathy. British Journal of Ophthalmology 88: 1137–1141.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Yuuki, T., T. Kanda, Y. Kimura, N. Kotajima, J. Tamura, I. Kobayashi, and S. Kishi. 2001. Inflammatory cytokines in vitreous fluid and serum of patients with diabetic vitreoretinopathy. Journal of Diabetic Complications 15: 257–259.

    Article  CAS  Google Scholar 

  4. El-Asrar, A.M., M.I. Nawaz, D. Kangave, K. Geboes, M.S. Ola, S. Ahmad, and M. Al-Shabrawey. 2011. High-mobility group box-1 and biomarkers of inflammation in the vitreous from patients with proliferative diabetic retinopathy. Molecular Vision 17: 1829–1838.

    PubMed  PubMed Central  Google Scholar 

  5. Demircan, N., B.G. Safran, M. Soylu, A.A. Ozcan, and S. Sizmaz. 2006. Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye (London, England) 20: 1366–1369.

    Article  CAS  Google Scholar 

  6. Scuderi, S., A.G. D'amico, A. Castorina, R. Imbesi, M.L. Carnazza, and V. D'agata. 2013. Ameliorative effect of PACAP and VIP against increased permeability in a model of outer blood retinal barrier dysfunction. Peptides 39: 119–124.

    Article  PubMed  CAS  Google Scholar 

  7. Liu, Y., M. Biarnes Costa, and C. Gerhardinger. 2012. IL-1beta is upregulated in the diabetic retina and retinal vessels: cell-specific effect of high glucose and IL-1beta autostimulation. PLoS One 7: e36949.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Agrawal, S.S., S. Naqvi, S.K. Gupta, and S. Srivastava. 2012. Prevention and management of diabetic retinopathy in STZ diabetic rats by Tinospora cordifolia and its molecular mechanisms. Food and Chemical Toxicology 50: 3126–3132.

    Article  PubMed  CAS  Google Scholar 

  9. Krady, J.K., A. Basu, C.M. Allen, Y. Xu, K.F. Lanoue, T.W. Gardner, and S.W. Levison. 2005. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54: 1559–1565.

    Article  PubMed  CAS  Google Scholar 

  10. Shen, X., B. Xie, Y. Cheng, Q. Jiao, and Y. Zhong. 2011. Effect of pigment epithelium derived factor on the expression of glutamine synthetase in early phase of experimental diabetic retinopathy. Ocular Immunology and Inflammation 19: 246–254.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, Y., G. Xu, Q. Ling, and C. Da. 2011. Expression of aquaporin 4 and Kir4.1 in diabetic rat retina: treatment with minocycline. Journal of International Medical Research 39: 464–479.

    Article  PubMed  CAS  Google Scholar 

  12. Gustavsson, C., C.D. Agardh, P. Hagert, and E. Agardh. 2008. Inflammatory markers in nondiabetic and diabetic rat retinas exposed to ischemia followed by reperfusion. Retina 28: 645–652.

    Article  PubMed  Google Scholar 

  13. El-Ghrably, I.A., H.S. Dua, G.M. Orr, D. Fischer, and P.J. Tighe. 2001. Intravitreal invading cells contribute to vitreal cytokine milieu in proliferative vitreoretinopathy. British Journal of Ophthalmology 85: 461–470.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Dong, N., B. Xu, B. Wang, and L. Chu. 2013. Study of 27 aqueous humor cytokines in patients with type 2 diabetes with or without retinopathy. Molecular Vision 19: 1734–1746.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Suzuki, Y., M. Nakazawa, K. Suzuki, H. Yamazaki, and Y. Miyagawa. 2011. Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Japanese Journal of Ophthalmology 55: 256–263.

    Article  PubMed  CAS  Google Scholar 

  16. Zhou, J., S. Wang, and X. Xia. 2012. Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy. Current Eye Research 37: 416–420.

    Article  PubMed  CAS  Google Scholar 

  17. Johnsen-Soriano, S., M. Sancho-Tello, E. Arnal, A. Navea, E. Cervera, F. Bosch-Morell, M. Miranda, and F. Javier Romero. 2010. IL-2 and IFN-gamma in the retina of diabetic rats. Graefe's Archive for Clinical and Experimental Ophthalmology 248: 985–990.

    Article  PubMed  CAS  Google Scholar 

  18. Kawashima, M., J. Shoji, Y. Kamura, and Y. Sato. 2005. Role of chemokines in the vitreous of proliferative diabetic retinopathy. Nihon Ganka Gakkai Zasshi 109: 596–602.

    PubMed  CAS  Google Scholar 

  19. Baggiolini, M., and I. Clark-Lewis. 1992. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Letters 307: 97–101.

    Article  PubMed  CAS  Google Scholar 

  20. Jorens, P.G., J.B. Richman-Eisenstat, B.P. Housset, P.D. Graf, I.F. Ueki, J. Olesch, and J.A. Nadel. 1992. Interleukin-8 induces neutrophil accumulation but not protease secretion in the canine trachea. American Journal of Physiology 263: L708–L713.

    PubMed  CAS  Google Scholar 

  21. Srinivasan, S., M. Yeh, E.C. Danziger, M.E. Hatley, A.E. Riggan, N. Leitinger, J.A. Berliner, and C.C. Hedrick. 2003. Glucose regulates monocyte adhesion through endothelial production of interleukin-8. Circulation Research 92: 371–377.

    Article  PubMed  CAS  Google Scholar 

  22. Gesser, B., M. Lund, N. Lohse, C. Vestergaad, K. Matsushima, S. Sindet-Pedersen, S.L. Jensen, K. Thestrup-Pedersen, and C.G. Larsen. 1996. IL-8 induces T cell chemotaxis, suppresses IL-4, and up-regulates IL-8 production by CD4+ T cells. Journal of Leukocyte Biology 59: 407–411.

    PubMed  CAS  Google Scholar 

  23. Koch, A.E., P.J. Polverini, S.L. Kunkel, L.A. Harlow, L.A. Dipietro, V.M. Elner, S.G. Elner, and R.M. Strieter. 1992. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258: 1798–1801.

    Article  PubMed  CAS  Google Scholar 

  24. Koskela, U.E., S.M. Kuusisto, A.E. Nissinen, M.J. Savolainen, and M.J. Liinamaa. 2013. High vitreous concentration of IL-6 and IL-8, but not of adhesion molecules in relation to plasma concentrations in proliferative diabetic retinopathy. Ophthalmic Research 49: 108–114.

    Article  PubMed  CAS  Google Scholar 

  25. Arjamaa, O., M. Pollonen, K. Kinnunen, T. Ryhanen, and K. Kaarniranta. 2011. Increased IL-6 levels are not related to NF-kappaB or HIF-1alpha transcription factors activity in the vitreous of proliferative diabetic retinopathy. Journal of Diabetes and its Complications 25: 393–397.

    Article  PubMed  Google Scholar 

  26. Lange, C.A., P. Stavrakas, U.F. Luhmann, D.J. De Silva, R.R. Ali, Z.J. Gregor, and J.W. Bainbridge. 2011. Intraocular oxygen distribution in advanced proliferative diabetic retinopathy. The American Journal of Pathology 152(406–412): e403.

    Google Scholar 

  27. Wakabayashi, Y., Y. Usui, Y. Okunuki, T. Kezuka, M. Takeuchi, T. Iwasaki, A. Ohno, and H. Goto. 2011. Increases of vitreous monocyte chemotactic protein 1 and interleukin 8 levels in patients with concurrent hypertension and diabetic retinopathy. Retina 31: 1951–1957.

    Article  PubMed  CAS  Google Scholar 

  28. Wakabayashi, Y., Y. Usui, Y. Okunuki, T. Kezuka, M. Takeuchi, H. Goto, and T. Iwasaki. 2010. Correlation of vascular endothelial growth factor with chemokines in the vitreous in diabetic retinopathy. Retina 30: 339–344.

    Article  PubMed  Google Scholar 

  29. Yoshimura, T., K.H. Sonoda, M. Sugahara, Y. Mochizuki, H. Enaida, Y. Oshima, A. Ueno, Y. Hata, H. Yoshida, and T. Ishibashi. 2009. Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS One 4: e8158.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Murugeswari, P., D. Shukla, A. Rajendran, R. Kim, P. Namperumalsamy, and V. Muthukkaruppan. 2008. Proinflammatory cytokines and angiogenic and anti-angiogenic factors in vitreous of patients with proliferative diabetic retinopathy and eales’ disease. Retina 28: 817–824.

    Article  PubMed  Google Scholar 

  31. Canataroglu, H., I. Varinli, A.A. Ozcan, A. Canataroglu, F. Doran, and S. Varinli. 2005. Interleukin (IL)-6, interleukin (IL)-8 levels and cellular composition of the vitreous humor in proliferative diabetic retinopathy, proliferative vitreoretinopathy, and traumatic proliferative vitreoretinopathy. Ocular Immunology and Inflammation 13: 375–381.

    Article  PubMed  CAS  Google Scholar 

  32. Hernandez, C., R.M. Segura, A. Fonollosa, E. Carrasco, G. Francisco, and R. Simo. 2005. Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabetic Medicine 22: 719–722.

    Article  PubMed  CAS  Google Scholar 

  33. Cicik, E., H. Tekin, S. Akar, O.B. Ekmekci, O. Donma, L. Koldas, and S. Ozkan. 2003. Interleukin-8, nitric oxide and glutathione status in proliferative vitreoretinopathy and proliferative diabetic retinopathy. Ophthalmic Research 35: 251–255.

    Article  PubMed  CAS  Google Scholar 

  34. Nicoletti, R., I. Venza, G. Ceci, M. Visalli, D. Teti, and A. Reibaldi. 2003. Vitreous polyamines spermidine, putrescine, and spermine in human proliferative disorders of the retina. British Journal of Ophthalmology 87: 1038–1042.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Lee, W.J., M.H. Kang, M. Seong, and H.Y. Cho. 2012. Comparison of aqueous concentrations of angiogenic and inflammatory cytokines in diabetic macular oedema and macular oedema due to branch retinal vein occlusion. British Journal of Ophthalmology 96: 1426–1430.

    Article  PubMed  Google Scholar 

  36. Funk, M., G. Schmidinger, N. Maar, M. Bolz, T. Benesch, G.J. Zlabinger, and U.M. Schmidt-Erfurth. 2010. Angiogenic and inflammatory markers in the intraocular fluid of eyes with diabetic macular edema and influence of therapy with bevacizumab. Retina 30: 1412–1419.

    Article  PubMed  Google Scholar 

  37. Jonas, J.B., R.A. Jonas, M. Neumaier, and P. Findeisen. 2012. Cytokine concentration in aqueous humor of eyes with diabetic macular edema. Retina 32: 2150–2157.

    Article  PubMed  CAS  Google Scholar 

  38. Lopez, P.F., H.E. Grossniklaus, H.M. Lambert, T.M. Aaberg, A. Capone Jr., P. Sternberg Jr., and N. L'hernault. 1991. Pathologic features of surgically excised subretinal neovascular membranes in age-related macular degeneration. The American Journal of Pathology 112: 647–656.

    CAS  Google Scholar 

  39. Roh, M.I., H.S. Kim, J.H. Song, J.B. Lim, H.J. Koh, and O.W. Kwon. 2009. Concentration of cytokines in the aqueous humor of patients with naive, recurrent and regressed CNV associated with amd after bevacizumab treatment. Retina 29: 523–529.

    Article  PubMed  Google Scholar 

  40. Ahmad, I., C.B. Del Debbio, A.V. Das, and S. Parameswaran. 2011. Muller glia: a promising target for therapeutic regeneration. Investigative Ophthalmology & Visual Science 52: 5758–5764.

    Article  CAS  Google Scholar 

  41. Newman, E., and A. Reichenbach. 1996. The Muller cell: a functional element of the retina. Trends in Neurosciences 19: 307–312.

    Article  PubMed  CAS  Google Scholar 

  42. Zhong, Y., J. Li, Y. Chen, J.J. Wang, R. Ratan, and S.X. Zhang. 2012. Activation of endoplasmic reticulum stress by hyperglycemia is essential for Muller cell-derived inflammatory cytokine production in diabetes. Diabetes 61: 492–504.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Mizutani, M., C. Gerhardinger, and M. Lorenzi. 1998. Muller cell changes in human diabetic retinopathy. Diabetes 47: 445–449.

    Article  PubMed  CAS  Google Scholar 

  44. Takeda, M., A. Takamiya, A. Yoshida, and H. Kiyama. 2002. Extracellular signal-regulated kinase activation predominantly in Muller cells of retina with endotoxin-induced uveitis. Investigative Ophthalmology & Visual Science 43: 907–911.

    Google Scholar 

  45. Walker, R.J., and J.J. Steinle. 2007. Role of beta-adrenergic receptors in inflammatory marker expression in Muller cells. Investigative Ophthalmology & Visual Science 48: 5276–5281.

    Article  Google Scholar 

  46. Goczalik, I., E. Ulbricht, M. Hollborn, M. Raap, S. Uhlmann, M. Weick, T. Pannicke, P. Wiedemann, A. Bringmann, A. Reichenbach, and M. Francke. 2008. Expression of CXCL8, CXCR1, and CXCR2 in neurons and glial cells of the human and rabbit retina. Investigative Ophthalmology & Visual Science 49: 4578–4589.

    Article  Google Scholar 

  47. Limb, G.A., T.E. Salt, P.M. Munro, S.E. Moss, and P.T. Khaw. 2002. In vitro characterization of a spontaneously immortalized human Muller cell line (MIO-M1). Investigative Ophthalmology & Visual Science 43: 864–869.

    Google Scholar 

  48. Lei, X., J. Zhang, J. Shen, L.M. Hu, Y. Wu, L. Mou, G. Xu, W. Li, and G.T. Xu. 2011. EPO attenuates inflammatory cytokines by Muller cells in diabetic retinopathy. Frontiers in Bioscience (Elite edition) 3: 201–211.

    Article  Google Scholar 

  49. Dinarello, C.A. 1996. Biologic basis for interleukin-1 in disease. Blood 87: 2095–2147.

    PubMed  CAS  Google Scholar 

  50. Rothwell, N.J., and G.N. Luheshi. 2000. Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends in Neurosciences 23: 618–625.

    Article  PubMed  CAS  Google Scholar 

  51. Kowluru, R.A., and S. Odenbach. 2004. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy. British Journal of Ophthalmology 88: 1343–1347.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Kumar, A., and N. Shamsuddin. 2012. Retinal Muller glia initiate innate response to infectious stimuli via toll-like receptor signaling. PLoS One 7: e29830.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Bian, Z.M., S.G. Elner, A. Yoshida, S.L. Kunkel, J. Su, and V.M. Elner. 2001. Activation of p38, ERK1/2 and NIK pathways is required for IL-1beta and TNF-alpha-induced chemokine expression in human retinal pigment epithelial cells. Experimental Eye Research 73: 111–121.

    Article  PubMed  CAS  Google Scholar 

  54. Shamsuddin, N., and A. Kumar. 2011. TLR2 mediates the innate response of retinal Muller glia to Staphylococcus aureus. The Journal of Immunology 186: 7089–7097.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Vij, N., A. Sharma, M. Thakkar, S. Sinha, and R.R. Mohan. 2008. PDGF-driven proliferation, migration, and IL8 chemokine secretion in human corneal fibroblasts involve JAK2-STAT3 signaling pathway. Molecular Vision 14: 1020–1027.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Cheranov, S.Y., D. Wang, V. Kundumani-Sridharan, M. Karpurapu, Q. Zhang, K.R. Chava, and G.N. Rao. 2009. The 15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis requires Janus kinase 2-signal transducer and activator of transcription-5B-dependent expression of interleukin-8. Blood 113: 6023–6033.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Weihua Tong for reference input, and thanks Guodong Lian, Chang Shu, and Zhiqing Wang for technical support. No conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E Song or David Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Ye, F., Xiong, H. et al. IL-1β Upregulates IL-8 Production in Human Müller Cells Through Activation of the p38 MAPK and ERK1/2 Signaling Pathways. Inflammation 37, 1486–1495 (2014). https://doi.org/10.1007/s10753-014-9874-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9874-5

KEY WORDS

Navigation