Skip to main content

Advertisement

Log in

Lipoxin A4 Inhibits NF-κB Activation and Cell Cycle Progression in RAW264.7 Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Lipoxins (LXs), including lipoxin A4 (LXA4), etc., have been approved for potent anti-inflammatory and immunomodulatory properties. Based on the important roles of macrophages in inflammation and immunomodulation, we investigate the effects of LXA4 on lipopolysaccharide (LPS)-induced proliferation and the possible signal transduction pathways in RAW264.7 macrophages. RAW264.7 cells were treated in vitro with or without LPS in the absence or presence of LXA4. [3H]-TdR incorporation assay and flow cytometry were used for detecting cell proliferation and cycle, respectively. Moreover, Western blot was applied to evaluate the protein expression levels of Cyclin E, IκBα, nuclear factor-κB (NF-κB), and IκB kinase (IKK). Our research showed that LXA4 suppressed LPS-induced proliferation, increased the proportion of the G0/G1 phase, decreased the proportion of the S phase, and downregulated the expression of Cyclin E. Besides these, LXA4 suppressed LPS-induced IκBα degradation, NF-κB translocation, and the expression of IKK. The data suggested that LXA4 inhibited LPS-induced proliferation through the G0/G1 phase arrest in RAW264.7 macrophages, and the inhibitory effect might depend on NF-κB signaling transduction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shimizu, S., T. Oqawa, S. Seno, et al. 2013. Pro-resolution mediator lipoxin A4 and its receptor in upper airway inflammation. Annals of Otology, Rhinology and Laryngology 122(11): 683–689.

    Google Scholar 

  2. Walker, J., E. Dichter, G. Kerner, et al. 2011. Lipoxin A4 increases survival by decreasing systemic inflammation and bacterial load in sepsis. Shock 36(4): 410–416.

    Article  CAS  PubMed  Google Scholar 

  3. Shryock, N., C. McBerry, R.M. Salazar Gonzalez, et al. 2013. Lipoxin A4 and 15-epi-lipoxin A4 protect against experimental cerebral malaria by inhibiting IL-12/IFN-γ in the brain. PLoS One 8(4): e618882.

    Article  Google Scholar 

  4. Machado, F.S., J.E. Johndrow, L. Esper, et al. 2006. Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nature Medicine 12: 330–334.

    Article  CAS  PubMed  Google Scholar 

  5. Kirkby, N.S., M.V. Chan, M.H. Lundberg, et al. 2013. Aspirin-triggered 15-epi-lipoxin A4 predicts cyclooxygenase-2 in the lungs of LPS-treated mice but not in the circulation: implications for a clinical test. FASEB Journal 27: 3938–3946.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Brancaleone, V., T. Gobbetti, N. Cenac, et al. 2013. A vasculo-protective circuit centered on lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 operative in murine microcirculation. Blood 25(122): 608–617.

    Article  Google Scholar 

  7. Jin, S.W., L. Zhang, Q.Q. Lian, et al. 2007. Posttreatment with aspirin-triggered lipoxin A4 analog attenuates lipopolysaccharide-induced acute lung injury in mice: the role of heme oxygenase-1. Anesthesia and Analgesia 104: 369–377.

    Article  CAS  PubMed  Google Scholar 

  8. Jia, Y., E.F. Morand, W. Song, et al. 2013. Regulation of lung fibroblast activation by annexin A1. Journal of Cellular Physiology 228: 476–484.

    Article  CAS  PubMed  Google Scholar 

  9. Gavins, F.N., A.M. Kamal, M. D’Amico, et al. 2005. Formyl-peptide receptor is not involved in the protection afforded by annexin 1 in murine acute myocardial infarct. FASEB Journal 19: 100–102.

    CAS  PubMed  Google Scholar 

  10. Zhou, X.Y., Z.J. Yu, D. Yan, et al. 2013. BML-111, a lipoxin receptor agonist, protected carbon tetrachloride-induced hepatic fibrosis in rats. Inflammation 36: 1101–1106.

    Article  CAS  PubMed  Google Scholar 

  11. Barnig, C., and B.D. Levy. 2013. Lipoxin A4: a new direction in asthma therapy? Expert Review of Clinical Immunology 9: 491–493.

    Article  CAS  PubMed  Google Scholar 

  12. Mangino, M.J., L. Brounts, B. Harms, et al. 2006. Lipoxin biosynthesis in inflammatory bowel disease. Prostaglandins & Other Lipid Mediators 79: 84–92.

    Article  CAS  Google Scholar 

  13. Conte, F.P., O. Menezes-de-Lima Jr., Verri Jr., et al. 2010. Lipoxin A(4) attenuates zymosan-induced arthritis by modulating endothelin-1 and its effects. British Journal of Pharmacology 161: 911–924.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Verrière, V., G. Higgins, M. Al-Alawi, et al. 2012. Lipoxin A4 stimulates calcium-activated chloride currents and increases airway surface liquid height in normal and cystic fibrosis airway epithelia. PLoS One 7: e37746.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Celik, G.E., F.O. Erkekol, Z. Misirligil, et al. 2007. Lipoxin A4 levels in asthma: relation with disease severity and aspirin sensitivity. Clinical and Experimental Allergy 37: 1494–1501.

    CAS  PubMed  Google Scholar 

  16. Hashimoto, A., I. Hayashi, Y. Murakami, et al. 2007. Antiinflammatory mediator lipoxin A4 and its receptor in synovitis of patients with rheumatoid arthritis. Journal of Rheumatology 34: 2144–2153.

    CAS  PubMed  Google Scholar 

  17. Vallejo, A.N., C.M. Weyand, and J.J. Goronzy. 2004. T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends in Molecular Medicine 10: 119–124.

    Article  CAS  PubMed  Google Scholar 

  18. Pappas, K., A.I. Papaioannou, K. Kostikas, et al. 2013. The role of macrophages in obstructive airways disease: chronic obstructive pulmonary disease and asthma. Cytokine 64: 613–625.

    Article  CAS  PubMed  Google Scholar 

  19. Dalli, J., and C.N. Serhan. 2012. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120: e60–e72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wu, S.H., P.Y. Liao, P.L. Yin, et al. 2009. Elevated expressions of 15-lipoxygenase and lipoxin A4 in children with acute poststreptococcal glomerulonephritis. American Journal of Pathology 174: 115–122.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Papayianni, A., C.N. Serhan, M.L. Phillips, et al. 1995. Transcellular biosynthesis of lipoxin A4 during adhesion of platelets and neutrophils in experimental immune complex glomerulonephritis. Kidney International 47: 1295–1302.

    Article  CAS  PubMed  Google Scholar 

  22. Badr, K.F., D.K. DeBoer, M. Schwartzberg, et al. 1989. Lipoxin A4 antagonizes cellular and in vivo actions of leukotriene D4 in rat glomerular mesangial cells: evidence for competition at a common receptor. Proceedings of the National Academy of Sciences of the United States of America 86: 3438–3442.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Machado, F.S., and J. Aliberti. 2008. Role of lipoxin in the modulation of immune response during infection. International Immunopharmacology 8(10): 1316–1319.

    Article  CAS  PubMed  Google Scholar 

  24. Aliberti, J., S. Hieny, E.S.C. Reis, et al. 2002. Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nature Immunology 3(1): 76–82.

    Article  CAS  PubMed  Google Scholar 

  25. Ramon, S., S. Bancos, C.N. Serhan, et al. 2013. Lipoxin A4 modulates adaptive immunity by decreasing memory B-cell responses via an ALX/FPR2-dependent mechanism. European Journal of Immunology. doi:10.1002/eji.201343316.

    Google Scholar 

  26. Claria, J., M.H. Lee, and C.N. Serhan. 1996. Aspirin-triggered lipoxins (15-epi-LX) are generated by the human lung adenocarcinoma cell line (A549)-neutrophil interactions and are potent inhibitors of cell proliferation. Molecular Medicine 2(5): 583–596.

    CAS  PubMed  Google Scholar 

  27. Chen, C., Y. Shen, Q.X. Qu, et al. 2013. Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response. Experimental Cell Research 319: 96–102.

    Article  CAS  PubMed  Google Scholar 

  28. Schoenhaut, D.S., A.O. Chua, A.G. Wolitzky, et al. 1992. Cloning and expression of murine IL-12. Journal of Immunology 148: 3433–3440.

    CAS  Google Scholar 

  29. Riccardi, C., R. Rossi, A. Giampietri, et al. 1984. Effects of interleukin-1 (IL-1) and interleukin-2 (IL-2) on the in vivo growth and differentiation of progenitors of natural killer (NK) cells. Chemioterapiav 3: 350–353.

    CAS  Google Scholar 

  30. Schwab, J.M., N. Chiang, M. Arita, et al. 2007. Resolvin E1 and Protectin D1 activate inflammation-resolution programs. Nature 447(7146): 869–874.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chiang, N., G. Fredman, F. Backhed, et al. 2012. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484(7395): 524–528.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lee, H.N., and Y.J. Surh. 2013. Resolvin D1-mediated NOX2 inactivation rescues macrophages undertaking efferocytosis from oxidative stress-induced apoptosis. Biochemical Pharmacology 86(6): 759–769.

    Article  CAS  PubMed  Google Scholar 

  33. Chen, H., B. Sun, S. Wang, et al. 2010. Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-kappaB. Journal of Cancer Research and Clinical Oncology 136: 897–903.

    Article  CAS  PubMed  Google Scholar 

  34. Widera, D., I. Mikenberg, A. Kaus, et al. 2006. Nuclear factor-kappaB controls the reaggregation of 3D neurosphere cultures in vitro. European Cells and Materials 11: 76–84.

    CAS  PubMed  Google Scholar 

  35. Liao, Z., J. Dong, W. Wu, et al. 2012. Resolvin D1 attenuates inflammation in lipopolysaccharide-induced acute lung injury through a process involving the PPARγ/NF-κB pathway. Respiratory Research 13: 110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhang, X., T. Wang, P. Gui, et al. 2013. Resolvin D1 reverts lipopolysaccharide-induced TJ proteins disruption and the increase of cellular permeability by regulating IκBα signaling in human vascular endothelial cells. Oxidative Medicine and Cellular Longevity 2013: 185715.

    PubMed Central  PubMed  Google Scholar 

  37. Jozsef, L., C. Zouki, N.A. Petasis, et al. 2002. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit peroxynitrite formation, NF-kappa B and AP-1 activation, and IL-8 gene expression in human leukocytes. Proceedings of the National Academy of Sciences of the United States of America 99: 13266–13271.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Schmitz, M.L., and P.A. Baeuerle. 1995. Multi-step activation of NF-κB/Rel transcription factors. Immunobiology 193: 116–127.

    Article  CAS  PubMed  Google Scholar 

  39. Kumar, A., Y. Takada, A.M. Boriek, et al. 2004. Nuclear factor-kappaB: its role in health and disease. Journal of Molecular Medicine 82: 434–848.

    Article  CAS  PubMed  Google Scholar 

  40. Fiore, S., J.F. Maddox, H.D. Perez, et al. 1994. Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. Journal of Experimental Medicine 180: 253–260.

    Article  CAS  PubMed  Google Scholar 

  41. Takano, T., S. Fiore, J.F. Maddox, et al. 1997. Aspirin-triggered 15-epi-lipoxin A4 and LXA4 stable analogs are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. Journal of Experimental Medicine 185: 1693–1704.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Chiang, N., T. Takano, M. Arita, et al. 2003. A novel rat lipoxin A4 receptor that is conserved in structure and function. British Journal of Pharmacology 139: 89–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Murphy, P.M., T. Ozcelik, R.T. Kenney, et al. 1992. A structural homologue of the N-formyl peptide receptor: characterization and chromosomal mapping of a peptide chemoattractant receptor gene family. Journal of Biology Chemistry 267: 7637–7643.

    CAS  Google Scholar 

  44. Ye, R.D., S.L. Cavanagh, O. Quehenberger, et al. 1992. Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochemical and Biophysical Research Communications 184: 582–589.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (no. 81100299), Natural Science Foundation of Jiangxi Province (no. 20114BAB215010), Educational Foundation of Jiangxi Province (no. GJJ13038), and Doctoral Foundation of Nanchang University (no. 06301055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yan Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YH., Wang, HM., Cai, ZY. et al. Lipoxin A4 Inhibits NF-κB Activation and Cell Cycle Progression in RAW264.7 Cells. Inflammation 37, 1084–1090 (2014). https://doi.org/10.1007/s10753-014-9832-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9832-2

KEY WORDS

Navigation