Skip to main content
Log in

Altered Inflammatory Responses to Citrobacter rodentium Infection, but not Bacterial Lipopolysaccharide, in Mice Lacking the Cyp4a10 or Cyp4a14 Genes

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Murine hepatic Cyp4a mRNAs are markedly downregulated during inflammation. Here, we investigated the roles of Cyp4a10 and Cyp4a14 in the response to infection with C. rodentium. Absence of either Cyp4a gene attenuated or abrogated the changes in spleen weight, colon crypt length, hepatic cytokine, and acute phase protein mRNAs, and serum acute phase proteins and cytokines caused by infection. Cyp4a10 / mice on a low-salt diet had a similar hepatic acute phase response as those mice on a high-salt diet, suggesting that hypertension associated with this genotype is not the cause of their altered inflammatory response. In contrast, wild-type, Cyp4a10 −/−, and Cyp4a14 −/− mice showed similar responses to injected LPS. These results implicate Cyp4a10 and Cyp4a14 in the regulation of the host inflammatory response to enteropathogenic bacterial infection but not to acute aseptic inflammation. Understanding the mechanism of this role may lead to novel therapeutic approaches in some inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hardwick, J.P. 2008. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochemical Pharmacology 75: 2263–2275.

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, E.F., C.N. Palmer, K.J. Griffin, and M.H. Hsu. 1996. Role of the peroxisome proliferator-activated receptor in cytochrome P450 4A gene regulation. FASEB Journal 10: 1241–1248.

    CAS  PubMed  Google Scholar 

  3. Sanders, R.J., R. Ofman, F. Valianpour, S. Kemp, and R.J. Wanders. 2005. Evidence for two enzymatic pathways for omega-oxidation of docosanoic acid in rat liver microsomes. Journal of Lipid Research 46: 1001–1008.

    Article  CAS  PubMed  Google Scholar 

  4. Gainer, J.V., A. Bellamine, E.P. Dawson, K.E. Womble, S.W. Grant, Y. Wang, L.A. Cupples, C.Y. Guo, S. Demissie, C.J. O’Donnell, N.J. Brown, M.R. Waterman, and J.H. Capdevila. 2005. Functional variant of CYP4A11 20-hydroxyeicosatetraenoic acid synthase is associated with essential hypertension. Circulation 111: 63–69.

    Article  CAS  PubMed  Google Scholar 

  5. Heng, Y.M., C.S. Kuo, P.S. Jones, R. Savory, R.M. Schulz, S.R. Tomlinson, T.J. Gray, and D.R. Bell. 1997. A novel murine P-450 gene, Cyp4a14, is part of a cluster of Cyp4a and Cyp4b, but not of CYP4F, genes in mouse and humans. Biochemical Journal 325(Pt 3): 741–749.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Powell, P.K., I. Wolf, R. Jin, and J.M. Lasker. 1998. Metabolism of arachidonic acid to 20-hydroxy-5,8,11,14-eicosatetraenoic acid by P450 enzymes in human liver: involvement of CYP4F2 and CYP4A11. Journal of Pharmacology and Experimental Therapeutics 285: 1327–1336.

    CAS  PubMed  Google Scholar 

  7. Lasker, J.M., W.B. Chen, I. Wolf, B.P. Bloswick, P.D. Wilson, and P.K. Powell. 2000. Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney. Role of Cyp4F2 and Cyp4A11. Journal of Biological Chemistry 275: 4118–4126.

    Article  CAS  PubMed  Google Scholar 

  8. McGiff, J.C., and J. Quilley. 1999. 20-HETE and the kidney: resolution of old problems and new beginnings. American Journal of Physiology 277: R607–R623.

    CAS  PubMed  Google Scholar 

  9. Miyata, N., and R.J. Roman. 2005. Role of 20-hydroxyeicosatetraenoic acid (20-HETE) in vascular system. Journal of Smooth Muscle Research 41: 175–193.

    Article  PubMed  Google Scholar 

  10. Roman, R.J. 2002. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiological Reviews 82: 131–185.

    CAS  PubMed  Google Scholar 

  11. Sarkis, A., and R.J. Roman. 2004. Role of cytochrome P450 metabolites of arachidonic acid in hypertension. Current Drug Metabolism 5: 245–256.

    Article  CAS  PubMed  Google Scholar 

  12. King, L.M., J.V. Gainer, G.L. David, D. Dai, J.A. Goldstein, N.J. Brown, and D.C. Zeldin. 2005. Single nucleotide polymorphisms in the CYP2J2 and CYP2C8 genes and the risk of hypertension. Pharmacogenetics and Genomics 15: 7–13.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, X., J. Wu, H. Liu, G. Lai, and Y. Zhao. 2012. Disturbed ratio of renal 20-HETE/EETs is involved in androgen-induced hypertension in cytochrome P450 4F2 transgenic mice. Gene 505: 352–359.

    Article  CAS  PubMed  Google Scholar 

  14. Athirakul, K., J.A. Bradbury, J.P. Graves, L.M. DeGraff, J. Ma, Y. Zhao, J.F. Couse, R. Quigley, D.R. Harder, X. Zhao, J.D. Imig, T.L. Pedersen, J.W. Newman, B.D. Hammock, A.J. Conley, K.S. Korach, T.M. Coffman, and D.C. Zeldin. 2008. Increased blood pressure in mice lacking cytochrome P450 2J5. FASEB Journal 22: 4096–4108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Holla, V.R., F. Adas, J.D. Imig, X. Zhao, E. Price Jr., N. Olsen, W.J. Kovacs, M.A. Magnuson, D.S. Keeney, M.D. Breyer, J.R. Falck, M.R. Waterman, and J.H. Capdevila. 2001. Alterations in the regulation of androgen-sensitive Cyp 4a monooxygenases cause hypertension. Proceedings of the National Academy of Sciences of the United States of America 98: 5211–5216.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Nakagawa, K., V.R. Holla, Y. Wei, W.H. Wang, A. Gatica, S. Wei, S. Mei, C.M. Miller, D.R. Cha, E. Price Jr., R. Zent, A. Pozzi, M.D. Breyer, Y. Guan, J.R. Falck, M.R. Waterman, and J.H. Capdevila. 2006. Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel. Journal of Clinical Investigation 116: 1696–1702.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chaluvadi, M.R., R.D. Kinloch, B.A. Nyagode, T.A. Richardson, M.J. Raynor, M. Sherman, L. Antonovic, H.W. Strobel, D.L. Dillehay, and E.T. Morgan. 2009. Regulation of hepatic cytochrome P450 expression in mice with intestinal or systemic infections of Citrobacter rodentium. Drug Metabolism and Disposition 37: 366–374.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Nyagode, B.A., C.M. Lee, and E.T. Morgan. 2010. Modulation of hepatic cytochrome P450s by Citrobacter rodentium infection in interleukin-6- and interferon-{gamma}-null mice. Journal of Pharmacology and Experimental Therapeutics 335: 480–488.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Richardson, T.A., M. Sherman, L. Antonovic, S.S. Kardar, H.W. Strobel, D. Kalman, and E.T. Morgan. 2006. Hepatic and renal cytochrome p450 gene regulation during Citrobacter rodentium infection in wild-type and toll-like receptor 4 mutant mice. Drug Metabolism and Disposition 34: 354–360.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Richardson, T.A., and E.T. Morgan. 2005. Hepatic cytochrome P450 gene regulation during endotoxin-induced inflammation in nuclear receptor knockout mice. Journal of Pharmacology and Experimental Therapeutics 314: 703–709.

    Article  CAS  PubMed  Google Scholar 

  21. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  22. Quigley, R., S. Chakravarty, X. Zhao, J.D. Imig, and J.H. Capdevila. 2009. Increased renal proximal convoluted tubule transport contributes to hypertension in Cyp4a14 knockout mice. Nephron. Physiology 113: 23–28.

    Article  Google Scholar 

  23. Cray, C., J. Zaias, and N.H. Altman. 2009. Acute phase response in animals: a review. Comparative Medicine 59: 517–526.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Murata, H., N. Shimada, and M. Yoshioka. 2004. Current research on acute phase proteins in veterinary diagnosis: an overview. Veterinary Journal 168: 28–40.

    Article  CAS  Google Scholar 

  25. Kinloch, R.D., C.M. Lee, N. van Rooijen, and E.T. Morgan. 2011. Selective role for tumor necrosis factor-alpha, but not interleukin-1 or Kupffer cells, in down-regulation of CYP3A11 and CYP3A25 in livers of mice infected with a noninvasive intestinal pathogen. Biochemical Pharmacology 82: 312–321.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Tunctan, B., B. Korkmaz, A.N. Sari, M. Kacan, D. Unsal, M.S. Serin, C.K. Buharalioglu, S. Sahan-Firat, T. Cuez, W.H. Schunck, J.R. Falck, and K.U. Malik. 2013. 5,14-HEDGE, a 20-HETE mimetic, reverses hypotension and improves survival in a rodent model of septic shock: contribution of soluble epoxide hydrolase, CYP2C23, MEK1/ERK1/2/IKKbeta/IkappaB-alpha/NF-kappaB pathway, and proinflammatory cytokine formation. Prostaglandins and Other Lipid Mediators 102–103: 31–41.

    Article  PubMed  Google Scholar 

  27. Ng, V.Y., Y. Huang, L.M. Reddy, J.R. Falck, E.T. Lin, and D.L. Kroetz. 2007. Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor alpha. Drug Metabolism and Disposition 35: 1126–1134.

    Article  CAS  PubMed  Google Scholar 

  28. Delerive, P., K. De Bosscher, S. Besnard, W. Vanden Berghe, J.M. Peters, F.J. Gonzalez, J.C. Fruchart, A. Tedgui, G. Haegeman, and B. Staels. 1999. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. Journal of Biological Chemistry 274: 32048–32054.

    Article  CAS  PubMed  Google Scholar 

  29. Muller, D.N., C. Schmidt, E. Barbosa-Sicard, M. Wellner, V. Gross, H. Hercule, M. Markovic, H. Honeck, F.C. Luft, and W.H. Schunck. 2007. Mouse Cyp4a isoforms: enzymatic properties, gender- and strain-specific expression, and role in renal 20-hydroxyeicosatetraenoic acid formation. Biochemical Journal 403: 109–118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Dierks, E.A., S.C. Davis, and P.R. Ortiz de Montellano. 1998. Glu-320 and Asp-323 are determinants of the CYP4A1 hydroxylation regiospecificity and resistance to inactivation by 1-aminobenzotriazole. Biochemistry 37: 1839–1847.

    Article  CAS  PubMed  Google Scholar 

  31. Xu, Z., L. Chen, L. Leung, T.S. Yen, C. Lee, and J.Y. Chan. 2005. Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia. Proceedings of the National Academy of Sciences of the United States of America 102: 4120–4125.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Christmas, P., K. Tolentino, V. Primo, K.Z. Berry, R.C. Murphy, M. Chen, D.M. Lee, and R.J. Soberman. 2006. Cytochrome P-450 4F18 is the leukotriene B4 omega-1/omega-2 hydroxylase in mouse polymorphonuclear leukocytes: identification as the functional orthologue of human polymorphonuclear leukocyte CYP4F3A in the down-regulation of responses to LTB4. Journal of Biological Chemistry 281: 7189–7196.

    Article  CAS  PubMed  Google Scholar 

  33. Lee, S.S., T. Pineau, J. Drago, E.J. Lee, J.W. Owens, D.L. Kroetz, P.M. Fernandez-Salguero, H. Westphal, and F.J. Gonzalez. 1995. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Molecular and Cellular Biology 15: 3012–3022.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Barclay, T.B., J.M. Peters, M.B. Sewer, L. Ferrari, F.J. Gonzalez, and E.T. Morgan. 1999. Modulation of cytochrome P-450 gene expression in endotoxemic mice is tissue specific and peroxisome proliferator-activated receptor-alpha dependent. Journal of Pharmacology and Experimental Therapeutics 290: 1250–1257.

    CAS  PubMed  Google Scholar 

  35. Pan, J., Q. Xiang, S. Ball, J. Scatina, J. Kao, and J.Y. Hong. 2003. Lipopolysaccharide-mediated modulation of cytochromes P450 in Stat1 null mice. Drug Metabolism and Disposition 31: 392–397.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases [Grant R01 DK072372]. We are grateful to Dr. Jorge Capdevila, Vanderbilt University for providing the Cyp4a-deficient mice that were used to establish our breeding colonies. The technical assistance of Mr. William Watkins, Dr. Matthew Merrell and Dr. Choon-Myung Lee is gratefully acknowledged. We wish to thank Dr. Dean P. Jones and Mr. Yongliang Liang (Clinical Biomarkers Laboratory, Department of Medicine, Emory University) for access to equipment used to quantify serum cytokines.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward T. Morgan.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2800 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyagode, B.A., Williams, I.R. & Morgan, E.T. Altered Inflammatory Responses to Citrobacter rodentium Infection, but not Bacterial Lipopolysaccharide, in Mice Lacking the Cyp4a10 or Cyp4a14 Genes. Inflammation 37, 893–907 (2014). https://doi.org/10.1007/s10753-013-9809-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9809-6

KEY WORDS

Navigation