Skip to main content

Advertisement

Log in

CXCL10 Activities, Biological Structure, and Source Along with Its Significant Role Played in Pathophysiology of Type I Diabetes Mellitus

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The etiology of the most autoimmune disorders is largely yet to be understood. However, major target antigens have been determined against some of clinically important molecules of human autoimmune diseases, such as insulin in type 1 diabetes mellitus (T1DM). T1DM is believed to be resulted from immune-mediated destruction of insulin-producing β-cells in pancreatic islets of Langerhans. Chemokines are small glycoproteins (weighing 8–10 kDa) that are chemotactive for a wide variety of cell types especially immune system cells and their target cells express appropriate G protein receptors. CXCL10 is a 10-kDa protein and is functionally categorized as an “inflammatory” chemokine. Recently, accumulating reports have shown that the serum and/or the tissue expressions of CXCL10 are increased in various autoimmune diseases like T1DM. Thus, in this article we will focus on the crucial role(s) played by CXCL10 in pathogenesis of T1DM. Therefore, we tried our best to collect the current reports regarding relationship between the serum concentrations of CXCL10 in T1DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bach, J.F., and L. Chatenoud. 2001. Tolerance to islet autoantigens in type 1 diabetes. Annual Review of Immunology 19: 131–161.

    Article  PubMed  CAS  Google Scholar 

  2. Nepom, G.T. 1995. Class II, antigens and disease susceptibility. Annual Review of Medicine 46: 17–25.

    Article  PubMed  CAS  Google Scholar 

  3. Arababadi, M.K. 2010. Interleukin-4 gene polymorphisms in type 2 diabetic patients with nephropathy. Iranian Journal of Kidney Diseases 4: 302–306.

    Google Scholar 

  4. Pitkanen, J., and P. Peterson. 2003. Autoimmune regulator: from loss of function to autoimmunity. Genes and Immunity 4: 12–21.

    Article  PubMed  CAS  Google Scholar 

  5. Kuchroo, V.K., D.T. Umetsu, R.H. DeKruyff, et al. 2003. The TIM gene family: emerging roles in immunity and disease. Nature Reviews Immunology 3: 454–462.

    Article  PubMed  CAS  Google Scholar 

  6. Ueda, H., J.M. Howson, L. Esposito, et al. 2003. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423: 506–511.

    Article  PubMed  CAS  Google Scholar 

  7. Gale, E.A. 2001. The discovery of type 1 diabetes. Diabetes 50: 217–226.

    Article  PubMed  CAS  Google Scholar 

  8. Atkinson, M.A., and G.S. Eisenbarth. 2001. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358: 221–229.

    Article  PubMed  CAS  Google Scholar 

  9. Derakhshan, R., M.K. Arababadi, Z. Ahmadi, et al. 2012. Increased circulating levels of SDF-1 (CXCL12) in type 2 diabetic patients are correlated to disease state but are unrelated to polymorphism of the SDF-1beta gene in the Iranian population. Inflammation 35: 900–904.

    Article  PubMed  CAS  Google Scholar 

  10. Ciesielski, C.J., E. Andreakos, B.M. Foxwell, et al. 2002. TNFalpha-induced macrophage chemokine secretion is more dependent on NF-kappaB expression than lipopolysaccharides-induced macrophage chemokine secretion. European Journal of Immunology 32: 2037–2045.

    Article  PubMed  CAS  Google Scholar 

  11. Ohmori, Y., and T.A. Hamilton. 1995. The interferon-stimulated response element and a kappa B site mediate synergistic induction of murine IP-10 gene transcription by IFN-gamma and TNF-alpha. Journal of Immunology 154: 5235–5244.

    CAS  Google Scholar 

  12. Shields, P.L., C.M. Morland, M. Salmon, et al. 1999. Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver. Journal of Immunology 163: 6236–6243.

    CAS  Google Scholar 

  13. Dillman 3rd, J.F., K.L. McGary, and J.J. Schlager. 2004. An inhibitor of p38 MAP kinase downregulates cytokine release induced by sulfur mustard exposure in human epidermal keratinocytes. Toxicology In Vitro 18: 593–599.

    Article  PubMed  CAS  Google Scholar 

  14. Ohmori, Y., and T.A. Hamilton. 1994. Cell type and stimulus specific regulation of chemokine gene expression. Biochemical and Biophysical Research Communications 198: 590–596.

    Article  PubMed  CAS  Google Scholar 

  15. Treacy, O., A.E. Ryan, T. Heinzl, et al. 2012. Adenoviral transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation. PLoS One 7: e42662.

    Article  PubMed  CAS  Google Scholar 

  16. Ge, M.Q., A.W. Ho, Y. Tang, et al. 2012. NK cells regulate CD8+ T cell priming and dendritic cell migration during influenza a infection by IFN-gamma and perforin-dependent mechanisms. Journal of Immunology 6: 6.

    Google Scholar 

  17. Moodley, K., C.E. Angel, M. Glass, et al. 2011. Real-time profiling of NK cell killing of human astrocytes using xCELLigence technology. Journal of Neuroscience Methods 200: 173–180.

    Article  PubMed  CAS  Google Scholar 

  18. Zeissig, S., K. Murata, L. Sweet, et al. 2012. Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity. Nature Medicine. 18(7): 1060–1068.

    Article  PubMed  CAS  Google Scholar 

  19. Luster, A.D., and J.V. Ravetch. 1987. Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). The Journal of Experimental Medicine 166: 1084–1097.

    Article  PubMed  CAS  Google Scholar 

  20. Hassanshahi, G., A. Jafarzadeh, Z. Ghorashi, et al. 2007. Expression of IP-10 chemokine is regulated by pro-inflammatory cytokines in cultured hepatocytes. Iranian Journal of Allergy, Asthma, and Immunology 6: 115–121.

    PubMed  CAS  Google Scholar 

  21. Hassanshahi, G., S.S. Patel, A.A. Jafarzadeh, et al. 2007. Expression of CXC chemokine IP-10/Mob-1 by primary hepatocytes following heat shock. Saudi Medical Journal 28: 514–518.

    PubMed  Google Scholar 

  22. Strieter, R.M., P.J. Polverini, S.L. Kunkel, et al. 1995. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. Journal of Biological Chemistry 270: 27348–27357.

    Article  PubMed  CAS  Google Scholar 

  23. Taub, D.D., A.R. Lloyd, K. Conlon, et al. 1993. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. The Journal of Experimental Medicine 177: 1809–1814.

    Article  PubMed  CAS  Google Scholar 

  24. Jinquan, T., C. Jing, H.H. Jacobi, et al. 2000. CXCR3 expression and activation of eosinophils: role of IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma. Journal of Immunology 165: 1548–1556.

    CAS  Google Scholar 

  25. Hassanshahi, G., A. Jafarzadeh, B. Esmaeilzadeh, et al. 2008. Assessment of NK cells response to hepatocyte derived chemotactic agents. Pakistan Journal of Biological Sciences 11: 1120–1125.

    Article  PubMed  CAS  Google Scholar 

  26. Hanaoka, R., T. Kasama, M. Muramatsu, et al. 2003. A novel mechanism for the regulation of IFN-gamma inducible protein-10 expression in rheumatoid arthritis. Arthritis Research & Therapy 5: R74–R81.

    Article  CAS  Google Scholar 

  27. Rotondi, M., L. Chiovato, S. Romagnani, et al. 2007. Role of chemokines in endocrine autoimmune diseases. Endocrine Reviews 28: 492–520.

    Article  PubMed  CAS  Google Scholar 

  28. Luster, A.D. 1998. Chemokines—chemotactic cytokines that mediate inflammation. The New England Journal of Medicine 338: 436–445.

    Article  PubMed  CAS  Google Scholar 

  29. Liang, P., L. Averboukh, W. Zhu, et al. 1994. Ras activation of genes: Mob-1 as a model. Proceedings of the National Academy of Sciences of the United States of America 91: 12515–12519.

    Article  PubMed  CAS  Google Scholar 

  30. Deng, W., Y. Ohmori, and T.A. Hamilton. 1994. Mechanisms of IL-4-mediated suppression of IP-10 gene expression in murine macrophages. Journal of Immunology 153: 2130–2136.

    CAS  Google Scholar 

  31. Ohmori, Y., and T.A. Hamilton. 1993. Cooperative interaction between interferon (IFN) stimulus response element and kappa B sequence motifs controls IFN gamma- and lipopolysaccharide-stimulated transcription from the murine IP-10 promoter. Journal of Biological Chemistry 268: 6677–6688.

    PubMed  CAS  Google Scholar 

  32. Christen, U., D.B. McGavern, A.D. Luster, et al. 2003. Among CXCR3 chemokines, IFN-gamma-inducible protein of 10 kDa (CXC chemokine ligand (CXCL) 10) but not monokine induced by IFN-gamma (CXCL9) imprints a pattern for the subsequent development of autoimmune disease. Journal of Immunology 171: 6838–6845.

    CAS  Google Scholar 

  33. Arimilli, S., W. Ferlin, N. Solvason, et al. 2000. Chemokines in autoimmune diseases. Immunology Reviews 177: 43–51.

    Article  CAS  Google Scholar 

  34. Kelsen, S.G., M.O. Aksoy, Y. Yang, et al. 2004. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 287: L584–L591.

    Article  PubMed  CAS  Google Scholar 

  35. Lasagni, L., M. Francalanci, F. Annunziato, et al. 2003. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. The Journal of Experimental Medicine 197: 1537–1549.

    Article  PubMed  CAS  Google Scholar 

  36. Bodnar, R.J., C.C. Yates, and A. Wells. 2006. IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain. Circulation Research 98: 617–625.

    Article  PubMed  CAS  Google Scholar 

  37. Addison, C.L., T.O. Daniel, M.D. Burdick, et al. 2000. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR + CXC chemokine-induced angiogenic activity. Journal of Immunology 165: 5269–5277.

    CAS  Google Scholar 

  38. Bodnar, R.J., C.C. Yates, M.E. Rodgers, et al. 2009. IP-10 induces dissociation of newly formed blood vessels. Journal of Cell Science 122: 2064–2077.

    Article  PubMed  CAS  Google Scholar 

  39. Taub, D.D., D.L. Longo, and W.J. Murphy. 1996. Human interferon-inducible protein-10 induces mononuclear cell infiltration in mice and promotes the migration of human T lymphocytes into the peripheral tissues and human peripheral blood lymphocytes-SCID mice. Blood 87: 1423–1431.

    PubMed  CAS  Google Scholar 

  40. Park, J.W., M.E. Gruys, K. McCormick, et al. 2001. Primary hepatocytes from mice treated with IL-2/IL-12 produce T cell chemoattractant activity that is dependent on monokine induced by IFN-gamma (Mig) and chemokine responsive to gamma-2 (Crg-2). Journal of Immunology 166: 3763–3770.

    CAS  Google Scholar 

  41. Laing, K.J., and C.J. Secombes. 2004. Chemokines. Developmental and Comparative Immunology 28: 443–460.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, X., T.L. Yue, E.H. Ohlstein, et al. 1996. Interferon-inducible protein-10 involves vascular smooth muscle cell migration, proliferation, and inflammatory response. Journal of Biological Chemistry 271: 24286–24293.

    Article  PubMed  CAS  Google Scholar 

  43. Neville, L.F., F. Abdullah, P.M. McDonnell, et al. 1995. Mob-1 expression in IL-2-induced ARDS: regulation by TNF-alpha. American Journal of Physiology 269: L884–L890.

    PubMed  CAS  Google Scholar 

  44. Lloyd, A.R., J.J. Oppenheim, D.J. Kelvin, et al. 1996. Chemokines regulate T cell adherence to recombinant adhesion molecules and extracellular matrix proteins. Journal of Immunology 156: 932–938.

    CAS  Google Scholar 

  45. Kanda, N., and S. Watanabe. 2002. Histamine inhibits the production of interferon-induced protein of 10 kDa in human squamous cell carcinoma and melanoma. The Journal of Investigative Dermatology 119: 1411–1419.

    Article  PubMed  CAS  Google Scholar 

  46. Majumder, S., L.Z. Zhou, P. Chaturvedi, et al. 1998. Regulation of human IP-10 gene expression in astrocytoma cells by inflammatory cytokines. Journal of Neuroscience Research 54: 169–180.

    Article  PubMed  CAS  Google Scholar 

  47. Han, B., and C.D. Logsdon. 1999. Cholecystokinin induction of mob-1 chemokine expression in pancreatic acinar cells requires NF-kappaB activation. American Journal of Physiology 277: C74–C82.

    PubMed  CAS  Google Scholar 

  48. Han, B., and C.D. Logsdon. 2000. CCK stimulates mob-1 expression and NF-kappaB activation via protein kinase C and intracellular Ca(2+). American Journal of Physiology. Cell Physiology 278: C344–C351.

    PubMed  CAS  Google Scholar 

  49. Kaplan, G., A.D. Luster, G. Hancock, et al. 1987. The expression of a gamma interferon-induced protein (IP-10) in delayed immune responses in human skin. The Journal of Experimental Medicine 166: 1098–1108.

    Article  PubMed  CAS  Google Scholar 

  50. Romagnani, P., E. Lazzeri, L. Lasagni, et al. 2002. IP-10 and Mig production by glomerular cells in human proliferative glomerulonephritis and regulation by nitric oxide. Journal of the American Society of Nephrology 13: 53–64.

    PubMed  CAS  Google Scholar 

  51. Majumder, S., L.Z. Zhou, P. Chaturvedi, et al. 1998. p48/STAT-1alpha-containing complexes play a predominant role in induction of IFN-gamma-inducible protein, 10 kDa (IP-10) by IFN-gamma alone or in synergy with TNF-alpha. Journal of Immunology 161: 4736–4744.

    CAS  Google Scholar 

  52. Kopydlowski, K.M., C.A. Salkowski, M.J. Cody, et al. 1999. Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. Journal of Immunology 163: 1537–1544.

    CAS  Google Scholar 

  53. Swaminathan, G.J., D.E. Holloway, R.A. Colvin, et al. 2003. Crystal structures of oligomeric forms of the IP-10/CXCL10 chemokine. Structure 11: 521–532.

    Article  PubMed  CAS  Google Scholar 

  54. Clark-Lewis, I., I. Mattioli, J.H. Gong, et al. 2003. Structure-function relationship between the human chemokine receptor CXCR3 and its ligands. Journal of Biological Chemistry 278: 289–295.

    Article  PubMed  CAS  Google Scholar 

  55. Goldberg, S.H., P. van der Meer, J. Hesselgesser, et al. 2001. CXCR3 expression in human central nervous system diseases. Neuropathology and Applied Neurobiology 27: 127–138.

    Article  PubMed  CAS  Google Scholar 

  56. Christensen, J.E., A. Nansen, T. Moos, et al. 2004. Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3. Journal of Neuroscience 24: 4849–4858.

    Article  PubMed  CAS  Google Scholar 

  57. Christen, U., and M.G. Von Herrath. 2004. IP-10 and type 1 diabetes: a question of time and location. Autoimmunity 37: 273–282.

    Article  CAS  Google Scholar 

  58. Rhode, A., M.E. Pauza, A.M. Barral, et al. 2005. Islet-specific expression of CXCL10 causes spontaneous islet infiltration and accelerates diabetes development. Journal of Immunology 175: 3516–3524.

    CAS  Google Scholar 

  59. Shimada, A., J. Morimoto, K. Kodama, et al. 2001. Elevated serum IP-10 levels observed in type 1 diabetes. Diabetes Care 24: 510–515.

    Article  PubMed  CAS  Google Scholar 

  60. Suzuki, R., A. Shimada, T. Maruyama, et al. 2003. T-cell function in anti-GAD65(+)diabetes with residual beta-cell function. Journal of Autoimmunity 20: 83–90.

    Article  PubMed  CAS  Google Scholar 

  61. Nicoletti, F., I. Conget, M. Di Mauro, et al. 2002. Serum concentrations of the interferon-gamma-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed type I diabetes mellitus patients and subjects at risk of developing the disease. Diabetologia 45: 1107–1110.

    Article  PubMed  CAS  Google Scholar 

  62. Shimada, A., K. Kodama, J. Morimoto, et al. 2003. Detection of GAD-reactive CD4+ cells in so-called “type 1B” diabetes. Annals of the New York Academy of Sciences 1005: 378–386.

    Article  PubMed  Google Scholar 

  63. Itoh, A., A. Shimada, K. Kodama, et al. 2004. GAD-reactive T cells were mainly detected in autoimmune-related type 1 diabetic patients with HLA DR9. Annals of the New York Academy of Sciences 1037: 33–40.

    Article  PubMed  CAS  Google Scholar 

  64. Shigihara, T., Y. Oikawa, Y. Kanazawa, et al. 2006. Significance of serum CXCL10/IP-10 level in type 1 diabetes. Journal of Autoimmunity 26: 66–71.

    Article  PubMed  CAS  Google Scholar 

  65. Shimada, A., B. Charlton, P. Rohane, et al. 1996. Immune regulation in type 1 diabetes. Journal of Autoimmunity 9: 263–269.

    Article  PubMed  CAS  Google Scholar 

  66. Yamada, S., J. Irie, A. Shimada, et al. 2003. Assessment of beta cell mass and oxidative peritoneal exudate cells in murine type 1 diabetes using adoptive transfer system. Autoimmunity 36: 63–70.

    Article  PubMed  Google Scholar 

  67. Narumi, S., Y. Tominaga, M. Tamaru, et al. 1997. Expression of IFN-inducible protein-10 in chronic hepatitis. Journal of Immunology 158: 5536–5544.

    CAS  Google Scholar 

  68. Han, G.D., H. Koike, T. Nakatsue, et al. 2003. IFN-inducible protein-10 has a differential role in podocyte during Thy 1.1 glomerulonephritis. Journal of the American Society of Nephrology 14: 3111–3126.

    Article  PubMed  CAS  Google Scholar 

  69. Morimoto, J., H. Yoneyama, A. Shimada, et al. 2004. CXC chemokine ligand 10 neutralization suppresses the occurrence of diabetes in nonobese diabetic mice through enhanced beta cell proliferation without affecting insulitis. Journal of Immunology 173: 7017–7024.

    CAS  Google Scholar 

  70. Frigerio, S., T. Junt, B. Lu, et al. 2002. Beta cells are responsible for CXCR3-mediated T-cell infiltration in insulitis. Nature Medicine 8: 1414–1420.

    Article  PubMed  CAS  Google Scholar 

  71. Vaidya, V.S., M.A. Niewczas, L.H. Ficociello, et al. 2011. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-beta-d-glucosaminidase. Kidney International 79: 464–470.

    Article  PubMed  CAS  Google Scholar 

  72. Kaas, A., C. Pfleger, L. Hansen, et al. 2010. Association of adiponectin, interleukin (IL)-1ra, inducible protein 10, IL-6 and number of islet autoantibodies with progression patterns of type 1 diabetes the first year after diagnosis. Clinical and Experimental Immunology 161: 444–452.

    Article  PubMed  CAS  Google Scholar 

  73. Hanifi-Moghaddam, P., N.C. Schloot, S. Kappler, et al. 2003. An association of autoantibody status and serum cytokine levels in type 1 diabetes. Diabetes 52: 1137–1142.

    Article  PubMed  CAS  Google Scholar 

  74. Shigihara, T., A. Shimada, Y. Oikawa, et al. 2005. CXCL10 DNA vaccination prevents spontaneous diabetes through enhanced beta cell proliferation in NOD mice. Journal of Immunology 175: 8401–8408.

    CAS  Google Scholar 

  75. Schulthess, F.T., F. Paroni, N.S. Sauter, et al. 2009. CXCL10 impairs beta cell function and viability in diabetes through TLR4 signaling. Cell Metabolism 9: 125–139.

    Article  PubMed  CAS  Google Scholar 

  76. Sabbah, E., K. Savola, P. Kulmala, et al. 1999. Diabetes-associated autoantibodies in relation to clinical characteristics and natural course in children with newly diagnosed type 1 diabetes. The childhood diabetes in Finland Study Group. Journal of Clinical Endocrinology and Metabolism 84: 1534–1539.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by a grant from the Rafsanjan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamhossin Hassanshahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadi, Z., Arababadi, M.K. & Hassanshahi, G. CXCL10 Activities, Biological Structure, and Source Along with Its Significant Role Played in Pathophysiology of Type I Diabetes Mellitus. Inflammation 36, 364–371 (2013). https://doi.org/10.1007/s10753-012-9555-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9555-1

KEY WORDS

Navigation