Skip to main content
Log in

Peripheral Blood Neutrophil Activity During Dermatophagoides pteronyssinus-Induced Late-Phase Airway Inflammation in Patients with Allergic Rhinitis and Asthma

  • Published:
Inflammation Aims and scope Submit manuscript

An Erratum to this article was published on 07 June 2012

Abstract

Recent investigations suggest that neutrophils may play an important role in the late-phase allergen-induced inflammation in allergic airway diseases. The aim of this study was to evaluate neutrophil chemotaxis, phagocytic activity, and reactive oxygen species (ROS) production in patients with allergic rhinitis and asthma challenged with inhaled Dermatophagoides pteronyssinus. Eighteen patients with allergic rhinitis and 14 with allergic asthma, all sensitized to D. pteronyssinus, as well as 15 healthy individuals underwent bronchial challenge with D. pteronyssinus. Peripheral blood collection and neutrophil isolation were performed 24 h before as well as 7 and 24 h after bronchial challenge. Neutrophils chemotaxis, phagocytic activity, and ROS production were analyzed by flow cytometer. Neutrophil chemotaxis and ROS production were increased, while phagocytic activity was decreased 24 h before challenge in patient groups compared with healthy individuals. After challenge, neutrophil chemotaxis and phagocytic activity increased after 7 and 24 h, when ROS production, only after 24 h. Bronchial allergen challenge had no influence for neutrophils activity in healthy subjects. Activated chemotaxis, phagocytic activity, and ROS production of peripheral blood neutrophils after challenge with D. pteronyssinus reflect an enhanced systemic inflammation in allergic rhinitis and asthma patients with induced late-phase airway inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnes, P.J. 2011. Pathophysiology of allergic inflammation. Immunology Review 242: 31–50.

    Article  CAS  Google Scholar 

  2. Nakagome, K., and M. Nagata. 2011. Pathogenesis of airway inflammation in bronchial asthma. Auris, Nasus, Larynx 38: 555–563.

    Article  PubMed  Google Scholar 

  3. Monteseirin, J. 2009. Neutrophils and asthma. Journal of Investigational Allergology and Clinical Immunology 19: 340–354.

    PubMed  CAS  Google Scholar 

  4. Foley, S.C., and Q. Hamid. 2007. Images in allergy and immunology. The Journal of Allergy and Clinical Immunology 119: 1282–1286.

    Article  PubMed  Google Scholar 

  5. Strieter, R.M., K. Kasahara, R.M. Allen, et al. 1992. Cytokine-induced neutrophil-derived interleukin-8. American Journal of Pathology 141: 397–407.

    PubMed  CAS  Google Scholar 

  6. Beeh, K.M., O. Kornmann, R. Buhl, S.V. Culpitt, et al. 2003. Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest 123: 1240–1247.

    Article  PubMed  CAS  Google Scholar 

  7. Yao, H., and I. Rahman. 2011. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicology and Applied Pharmacology 254: 72–85.

    Article  PubMed  CAS  Google Scholar 

  8. Stringer, K.A., M. Tobias, H.C. O’Neill, et al. 2007. Cigarette smoke extract-induced suppression of caspase-3-like activity impairs human neutrophil phagocytosis. American Journal of Physiology. Lung Cellular and Molecular Physiology 292: L1572–L1579.

    Article  PubMed  CAS  Google Scholar 

  9. Baginski, T.K., K. Dabbagh, C. Satiawatcharaphong, et al. 2006. Cigarette smoke synergistically enhances respiratory mucin induction by proinflammatory stimuli. American Journal of Respiratory Cell and Molecular Biology 35: 165–174.

    Article  PubMed  CAS  Google Scholar 

  10. Drews, A.C., M.M. Pizzichini, E. Pizzichini, et al. 2009. Neutrophilic inflammation is a main feature of induced sputum in nonatopic asthmatic children. Allergy 64: 1597–1601.

    Article  PubMed  CAS  Google Scholar 

  11. Kämpe, M., I. Stolt, M. Lampinen, et al. 2011. Patients with allergic rhinitis and allergic asthma share the same pattern of eosinophil and neutrophil degranulation after allergen challenge. Clinical and Molecular Allergy 9: 3.

    Article  PubMed  Google Scholar 

  12. Lommatzsch, M., P. Julius, M. Kuepper, et al. 2006. The course of allergen-induced leukocyte infiltration in human and experimental asthma. The Journal of Allergy and Clinical Immunology 118: 91–97.

    Article  PubMed  CAS  Google Scholar 

  13. Monteseirín, J., M.J. Camacho, I. Bonilla, et al. 2002. Respiratory burst in neutrophils from asthmatic patients. The Journal of Asthma 39: 619–624.

    Article  PubMed  Google Scholar 

  14. Henricks, P.A., and F.P. Nijkamp. 2001. Reactive oxygen species as mediators in asthma. Pulmonary Pharmacology & Therapeutics 14: 409–420.

    Article  CAS  Google Scholar 

  15. Hatzivlassiou, M., C. Grainge, V. Kehagia, et al. 2010. The allergen specificity of the late asthmatic reaction. Allergy 65: 355–358.

    Article  PubMed  CAS  Google Scholar 

  16. Bousquet, J., N. Khaltaev, A.A. Cruz, et al. 2008. Allergic rhinitis and its impact on asthma (ARIA) 2008 update (in collaboration with the WHO, GA2LEN and AllerGen). Allergy 63: 8–160.

    Article  PubMed  Google Scholar 

  17. Global Initiative for Asthma. Global strategy for asthma management and prevention. 2010. NHLBI/WHO workshop. Bethesda: National Institutes of Health. http://www.ginasthma.com.

  18. Dreborg, S., A. Backman, and A. Basoma. 1989. Skin tests used in type I allergy testing. Position paper. Allergy 10: 1–59.

    Google Scholar 

  19. Miller, M.R., J. Hankinson, V. Brusasco, et al. 2005. ATS/ERS Task force standardisation of lung function testing. Standardisation of spirometry. European Respiratory Journal 26: 319–338.

    Article  PubMed  CAS  Google Scholar 

  20. Baur, X., H. Huber, P.O. Degens, et al. 1998. Relation between occupational asthma case history, bronchial methacholine challenge, and specific challenge test in patients with suspected occupational asthma. American Journal of Industrial Medicine 33: 114–122.

    Article  PubMed  CAS  Google Scholar 

  21. Liu, L., N.N. Jarjour, W.W. Busse, et al. 2004. Enhanced generation of helper T type 1 and 2 chemokines in allergen-induced asthma. American Journal of Respiratory and Critical Care Medicine 169: 1118–1124.

    Article  PubMed  Google Scholar 

  22. Erger, R.A., and T.B. Casale. 1998. Interleukin-8 plays a significant role in IgE-mediated lung inflammation. European Respiratory Journal 11: 299–305.

    Article  PubMed  CAS  Google Scholar 

  23. Panina-Bordignon, P., and D. D’Ambrosio. 2003. Chemokines and their receptors in asthma and chronic obstructive pulmonary disease. Current Opinion in Pulmonary Medicine 9: 104–110.

    Article  PubMed  CAS  Google Scholar 

  24. Terada, L.S. 2006. Specificity in reactive oxidant signalling: think globally, act locally. The Journal of Cell Biology 174: 615–623.

    Article  PubMed  CAS  Google Scholar 

  25. Walter, R.E., J.B. Wilk, M.G. Larson, et al. 2008. Systemic inflammation and COPD. The Framingham Heart Study. Chest 133: 19–25.

    Article  PubMed  CAS  Google Scholar 

  26. Babior, B.M., J.D. Lambeth, and W. Nauseef. 2002. The neutrophil NADPH oxidase. Archives of Biochemistry and Biophysics 397: 342–324.

    Article  PubMed  CAS  Google Scholar 

  27. Galli, S.J., M. Tsai, and A.M. Piliponsky. 2008. The development of allergic inflammation. Nature 454: 445–454.

    Article  PubMed  CAS  Google Scholar 

  28. Dahlgren, C., A. Karlsson, and J. Bylund. 2007. Measurement of respiratory burst products generated by professional phagocytes. Methods in Molecular Biology 412: 349–363.

    Article  PubMed  CAS  Google Scholar 

  29. Serrander, L., V. Jaquet, K. Bedard, et al. 2007. NOX5 is expressed at the plasma membrane and generates superoxide in response to protein kinase C activation. Biochimie 89: 1159–1167.

    Article  PubMed  CAS  Google Scholar 

  30. Boldogh, I., A. Bacsi, and B.K. Choudhury. 2005. ROS generated by pollen NADPH oxidase provide a signal that augments antigen induced allergic airway inflammation. Journal of Clinical Investigation 115: 2169–2179.

    Article  PubMed  CAS  Google Scholar 

  31. Blüml, S., B. Rosc, A. Lorincz, et al. 2008. The oxidation state of phospholipids controls the oxidative burst in neutrophil granulocytes. Journal of Immunology 181: 4347–4353.

    Google Scholar 

  32. Murdoch, J.R., and C.M. Lloyd. 2010. Chronic inflammation and asthma. Mutation Research 690: 24–39.

    Article  PubMed  CAS  Google Scholar 

  33. van der Vliet, A. 2008. NADPH oxidases in lung biology and pathology. Host defense enzymes, and more. Free Radical Biology & Medicine 44: 938–955.

    Article  Google Scholar 

  34. Wood, L.G., P.G. Gibson, and M.L. Garg. 2003. Biomarkers of lipid peroxidation, airway inflammation and asthma. European Respiratory Journal 21: 177–186.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study supported by the Research Council of Lithuania (project number LIG-18/2010).

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Lavinskiene.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10753-012-9485-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavinskiene, S., Jeroch, J., Malakaskas, K. et al. Peripheral Blood Neutrophil Activity During Dermatophagoides pteronyssinus-Induced Late-Phase Airway Inflammation in Patients with Allergic Rhinitis and Asthma. Inflammation 35, 1600–1609 (2012). https://doi.org/10.1007/s10753-012-9475-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9475-0

KEY WORDS

Navigation