Skip to main content

Advertisement

Log in

HMGB1 Increases Permeability of the Endothelial Cell Monolayer via RAGE and Src Family Tyrosine Kinase Pathways

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

High-mobility group box 1 (HMGB1) was recently established as a proinflammatory mediator of sepsis, and its potential role in the pathogenesis of sepsis remains elusive. In the present study, we determined whether HMGB1 increases the permeability of the endothelial cell monolayer in sepsis. Permeability was measured from fluorescein isothiocyanate (FITC)–dextran 40-kDa flux across the endothelial cell monolayer at control and after HMGB1 administration. We found that HMGB1 increased human umbilical vein endothelial cell permeability to FITC–dextran 40 kDa in a time- and concentration-dependent manner. HMGB1 induced the mRNA transcription and protein expression of receptor for advanced glycation end products (RAGE). Blockade of cell surface receptors RAGE with specific neutralizing antibodies and RAGE siRNA or blockade of Src family tyrosine kinase with inhibitor PP2 significantly reduced HMGB1-induced hyperpermeability of endothelial cell monolayer. Our data demonstrate that (1) HMGB1 increases permeability of endothelial cell monolayer in a time- and concentration-dependent manner and (2) HMGB1-induced hyperpermeability is mediated through RAGE and Src family tyrosine kinase signaling pathway. These findings may have implications for therapeutic interventions in patients with sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Cross, A.S., and S.M. Opal. 2003. A new paradigm for the treatment of sepsis: is it time to consider combination therapy? Annals of Internal Medicine 138(6): 502–505.

    PubMed  Google Scholar 

  2. Opal, S.M. 2007. The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. International Journal of Medical Microbiology 297(5): 365–377.

    Article  PubMed  CAS  Google Scholar 

  3. Martin, G.S., D.M. Mannino, S. Eaton, and M. Moss. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. The New England Journal of Medicine 348(16): 1546–1554.

    Article  PubMed  Google Scholar 

  4. Wenzel, R.P. 2002. Treating sepsis. The New England Journal of Medicine 347(13): 966–967.

    Article  PubMed  Google Scholar 

  5. Brun-Buisson, C., F. Doyon, J. Carlet, P. Dellamonica, F. Gouin, A. Lepoutre, J.C. Mercier, G. Offenstadt, and B. Régnier. 1995. Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA 274(12): 968–974.

    Article  PubMed  CAS  Google Scholar 

  6. Legrand, M., E. Klijn, D. Payen, and C. Ince. 2010. The response of the host microcirculation to bacterial sepsis: Does the pathogen matter? Journal of Molecular Medicine 88(2): 127–133.

    Article  PubMed  Google Scholar 

  7. Martin, M.A., and H.J. Silverman. 1992. Gram-negative sepsis and the adult respiratory distress syndrome. Clinical Infectious Diseases 14: 1213–1228.

    Article  PubMed  CAS  Google Scholar 

  8. Parsons, P.E., G.S. Worthen, E.E. Moore, R.M. Tate, and P.M. Henson. 1989. The association of circulating endotoxin with the development of the adult respiratory distress syndrome. The American Review of Respiratory Disease 140: 294–301.

    Article  PubMed  CAS  Google Scholar 

  9. Hudson, L.D., J.A. Milberg, D. Anardi, and R.J. Maunder. 1995. Clinical risks for development of the acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 151(2 Pt 1): 293–301.

    PubMed  CAS  Google Scholar 

  10. Tracey, K.J., B. Beutler, S.F. Lowry, J. Merryweather, S. Wolpe, I.W. Milsark, R.J. Hariri, T.J. Fahey 3rd, A. Zentella, J.D. Albert, et al. 1986. Shock and tissue injury induced by recombinant human cachectin. Science 234(4775): 470–474.

    Article  PubMed  CAS  Google Scholar 

  11. Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K.R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P.E. Molina, N.N. Abumrad, A. Sama, and K.J. Tracey. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285(5425): 248–251.

    Article  PubMed  CAS  Google Scholar 

  12. Mark, K.S., and D.W. Miller. 1999. Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-alpha exposure. Life Sciences 64(21): 1941–1953.

    Article  PubMed  CAS  Google Scholar 

  13. Marano, C.W., S.A. Lewis, L.A. Garulacan, A.P. Soler, and J.M. Mullin. 1998. Tumor necrosis factor-alpha increases sodium and chloride conductance across the tight junction of CACO-2 BBE, a human intestinal epithelial cell line. The Journal of Membrane Biology 161(3): 263–274.

    Article  PubMed  CAS  Google Scholar 

  14. Hybertson, B.M., E.K. Jepson, O.J. Cho, J.H. Clarke, Y.M. Lee, and J.E. Repine. 1997. TNF mediates lung leak, but not neutrophil accumulation, in lungs of rats given IL-1 intratracheally. American Journal of Respiratory and Critical Care Medicine 155(6): 1972–1976.

    PubMed  CAS  Google Scholar 

  15. Saulpaw, C.E., and W.L. Joyner. 1997. Bradykinin and tumor necrosis factor-alpha alter albumin transport in vivo: a comparative study. Microvascular Research 54(3): 221–232.

    Article  PubMed  CAS  Google Scholar 

  16. Sundén-Cullberg, J., A. Norrby-Teglund, A. Rouhiainen, H. Rauvala, G. Herman, K.J. Tracey, M.L. Lee, J. Andersson, L. Tokics, and C.J. Treutiger. 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Critical Care Medicine 33(3): 564–573.

    Article  PubMed  Google Scholar 

  17. Abraham, E., J. Arcaroli, A. Carmody, H. Wang, and K.J. Tracey. 2000. HMG-1 as a mediator of acute lung inflammation. Journal of Immunology 165(6): 2950–2954.

    CAS  Google Scholar 

  18. Fiuza, C., M. Bustin, S. Talwar, M. Tropea, E. Gerstenberger, J.H. Shelhamer, and A.F. Suffredini. 2003. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101(7): 2652–2660.

    Article  PubMed  CAS  Google Scholar 

  19. Lal, B.K., S. Varma, P.J. Pappas, R.W. Hobson 2nd, and W.N. Durán. 2001. VEGF increases permeability of the endothelial cell monolayer by activation of PKB/akt, endothelial nitric-oxide synthase, and MAP kinase pathways. Microvascular Research 62(3): 252–262.

    Article  PubMed  CAS  Google Scholar 

  20. Breslin, J.W., P.J. Pappas, J.J. Cerveira, R.W. Hobson 2nd, and W.N. Durán. 2003. VEGF increases endothelial permeability by separate signaling pathways involving ERK-1/2 and nitric oxide. American Journal of Physiology. Heart and Circulatory Physiology 284(1): H92–H100.

    PubMed  CAS  Google Scholar 

  21. Yang, X., D.A. Fullerton, X. Su, L. Ao, J.C. Cleveland Jr., and X. Meng. 2009. Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of Toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2. Journal of the American College of Cardiology 53(6): 491–500.

    Article  PubMed  CAS  Google Scholar 

  22. Su X, Ao L, Shi Y, Johnson TR, Fullerton DA, Meng X. 2011. Oxidized low-density lipoprotein induces bone morphogenetic protein-2 in coronary artery endothelial cells via Toll-like receptors 2 and 4. Journal of Biological Chemistry 286(14): 12213-12220.

    Google Scholar 

  23. Huttunen, H.J., and H. Rauvala. 2004. Amphoterin as an extracellular regulator of cell motility: From discovery to disease. Journal of Internal Medicine 255(3): 351–366.

    Article  PubMed  CAS  Google Scholar 

  24. Czura, C.J., H. Wang, and K.J. Tracey. 2001. Dual roles for HMGB1: DNA binding and cytokine. Journal of Endotoxin Research 7(4): 315–321.

    Article  PubMed  CAS  Google Scholar 

  25. Andersson, U., H. Wang, K. Palmblad, A.C. Aveberger, O. Bloom, H. Erlandsson-Harris, A. Janson, R. Kokkola, M. Zhang, and H. Yang. 2000. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. The Journal of Experimental Medicine 192(4): 565–570.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, H., S. Zhu, R. Zhou, W. Li, and A.E. Sama. 2008. Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Reviews in Molecular Medicine 10: e32.

    Article  PubMed  Google Scholar 

  27. Andriopoulou, P., P. Navarro, A. Zanetti, M.G. Lampugnani, and E. Dejana. 1999. Histamine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions. Arteriosclerosis, Thrombosis, and Vascular Biology 19(10): 2286–2297.

    Article  PubMed  CAS  Google Scholar 

  28. Collares-Buzato, C.B., M.A. Jepson, N.L. Simmons, and B.H. Hirst. 1998. Increased tyrosine phosphorylation causes redistribution of adherens junction and tight junction proteins and perturbs paracellular barrier function in MDCK epithelia. European Journal of Cell Biology 76(2): 85–92.

    PubMed  CAS  Google Scholar 

  29. Konstantoulaki, M., P. Kouklis, and A.B. Malik. 2003. Protein kinase C modifications of VE-cadherin, p120, and beta-catenin contribute to endothelial barrier dysregulation induced by thrombin. American Journal of Physiology. Lung Cellular and Molecular Physiology 285(2): L434–L442.

    PubMed  CAS  Google Scholar 

  30. Harris, E.S., and W.J. Nelson. 2010. VE-cadherin: At the front, center, and sides of endothelial cell organization and function. Current Opinion in Cell Biology 22(5): 651–658.

    Article  PubMed  CAS  Google Scholar 

  31. Gulino, D., E. Delachanal, E. Concord, Y. Genoux, B. Morand, M.O. Valiron, E. Sulpice, R. Scaife, M. Alemany, and T. Vernet. 1998. Alteration of endothelial cell monolayer integrity triggers resynthesis of vascular endothelium cadherin. The Journal of Biological Chemistry 273(45): 29786–29793.

    Article  PubMed  CAS  Google Scholar 

  32. Rabiet, M.J., J.L. Plantier, Y. Rival, Y. Genoux, M.G. Lampugnani, and E. Dejana. 1996. Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arteriosclerosis, Thrombosis, and Vascular Biology 16(3): 488–496.

    Article  PubMed  CAS  Google Scholar 

  33. Alexander, J.S., B.C. Alexander, L.A. Eppihimer, N. Goodyear, R. Haque, C.P. Davis, T.J. Kalogeris, D.L. Carden, Y.N. Zhu, and C.G. Kevil. 2000. Inflammatory mediators induce sequestration of VE-cadherin in cultured human endothelial cells. Inflammation 24(2): 99–113.

    Article  PubMed  CAS  Google Scholar 

  34. Tabibzadeh, S., Q.F. Kong, S. Kapur, P.G. Satyaswaroop, and K. Aktories. 1995. Tumour necrosis factor-alpha-mediated dyscohesion of epithelial cells is associated with disordered expression of cadherin/beta-catenin and disassembly of actin filaments. Human Reproduction 10(4): 994–1004.

    PubMed  CAS  Google Scholar 

  35. Alexander, J.S., S.A. Jackson, E. Chaney, C.G. Kevil, and F.R. Haselton. 1998. The role of cadherin endocytosis in endothelial barrier regulation: Involvement of protein kinase C and actin–cadherin interactions. Inflammation 22(4): 419–433.

    Article  PubMed  CAS  Google Scholar 

  36. Kevil, C.G., N. Ohno, D.C. Gute, N. Okayama, S.A. Robinson, E. Chaney, and J.S. Alexander. 1998. Role of cadherin internalization in hydrogen peroxide-mediated endothelial permeability. Free Radical Biology & Medicine 24(6): 1015–1022.

    Article  CAS  Google Scholar 

  37. Nwariaku, F.E., J. Chang, X. Zhu, Z. Liu, S.L. Duffy, N.H. Halaihel, L. Terada, and R.H. Turnage. 2002. The role of p38 map kinase in tumor necrosis factor-induced redistribution of vascular endothelial cadherin and increased endothelial permeability. Shock 18(1): 82–85.

    Article  PubMed  Google Scholar 

  38. Wong, R.K., A.L. Baldwin, and R.L. Heimark. 1999. Cadherin-5 redistribution at sites of TNF-alpha and IFN-gamma-induced permeability in mesenteric venules. The American Journal of Physiology 276(2 Pt 2): H736–H748.

    PubMed  CAS  Google Scholar 

  39. Schlegel, N., Y. Baumer, D. Drenckhahn, and J. Waschke. 2009. Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro. Critical Care Medicine 37(5): 1735–1743.

    Article  PubMed  CAS  Google Scholar 

  40. Park, J.S., F. Gamboni-Robertson, Q. He, D. Svetkauskaite, J.Y. Kim, D. Strassheim, J.W. Sohn, S. Yamada, I. Maruyama, A. Banerjee, A. Ishizaka, and E. Abraham. 2006. High mobility group box 1 protein interacts with multiple Toll-like receptors. American Journal of Physiology. Cell Physiology 290(3): C917–C924.

    Article  PubMed  CAS  Google Scholar 

  41. Kokkola, R., A. Andersson, G. Mullins, T. Ostberg, C.J. Treutiger, B. Arnold, P. Nawroth, U. Andersson, R.A. Harris, and H.E. Harris. 2005. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scandinavian Journal of Immunology 61(1): 1–9.

    Article  PubMed  CAS  Google Scholar 

  42. Rouhiainen, A., J. Kuja-Panula, E. Wilkman, J. Pakkanen, J. Stenfors, R.K. Tuominen, M. Lepäntalo, O. Carpén, and J. Parkkinen. 2004. Regulation of monocyte migration by amphoterin (HMGB1). Blood 104(4): 1174–1182.

    Article  PubMed  CAS  Google Scholar 

  43. Treutiger, C.J., G.E. Mullins, A.S. Johansson, A. Rouhiainen, H.M. Rauvala, H. Erlandsson-Harris, U. Andersson, H. Yang, K.J. Tracey, J. Andersson, and J.E. Palmblad. 2003. High mobility group 1 B-box mediates activation of human endothelium. Journal of Internal Medicine 254(4): 375–385.

    Article  PubMed  CAS  Google Scholar 

  44. Hori, O., J. Brett, T. Slattery, R. Cao, J. Zhang, J.X. Chen, M. Nagashima, E.R. Lundh, S. Vijay, D. Nitecki, et al. 1995. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. The Journal of Biological Chemistry 270(43): 25752–25761.

    Article  PubMed  CAS  Google Scholar 

  45. Huang, W., Y. Tang, and L. Li. 2010. HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine 51: 119–126.

    Article  PubMed  CAS  Google Scholar 

  46. Huttunen, H.J., C. Fages, J. Kuja-Panula, A.J. Ridley, and H. Rauvala. 2002. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Research 62(16): 4805–4811.

    PubMed  CAS  Google Scholar 

  47. Huttunen, H.J., C. Fages, and H. Rauvala. 1999. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. The Journal of Biological Chemistry 274(28): 19919–19924.

    Article  PubMed  CAS  Google Scholar 

  48. Park, J.S., D. Svetkauskaite, Q. He, J.Y. Kim, D. Strassheim, A. Ishizaka, and E. Abraham. 2004. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. The Journal of Biological Chemistry 279(9): 7370–7377.

    Article  PubMed  CAS  Google Scholar 

  49. Lv, B., H. Wang, Y. Tang, Z. Fan, X. Xiao, and F. Chen. 2009. High-mobility group box 1 protein induces tissue factor expression in vascular endothelial cells via activation of NF-kappaB and Egr-1. Thrombosis and Haemostasis 102(2): 352–359.

    PubMed  Google Scholar 

  50. Luan, Z.G., H. Zhang, P.T. Yang, X.C. Ma, C. Zhang, and R.X. Guo. 2010. HMGB1 activates nuclear factor-κB signaling by RAGE and increases the production of TNF-α in human umbilical vein endothelial cells. Immunobiology 215(12): 956–962.

    Article  PubMed  CAS  Google Scholar 

  51. Takeda, K., T. Kaisho, and S. Akira. 2003. Toll-like receptors. Annual Review of Immunology 21: 335–376.

    Article  PubMed  CAS  Google Scholar 

  52. Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11(4): 443–451.

    Article  PubMed  CAS  Google Scholar 

  53. Aderem, A., and R.J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406(6797): 782–787.

    Article  PubMed  CAS  Google Scholar 

  54. Poltorak, A., X. He, I. Smirnova, M.Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282(5396): 2085–2088.

    Article  PubMed  CAS  Google Scholar 

  55. Aleshin, A., and R.S. Finn. 2010. SRC: a century of science brought to the clinic. Neoplasia 12(8): 599–607.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the peer reviewers for their critical and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoqing Tang.

Additional information

Wenchang Huang and Yiyun Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Liu, Y., Li, L. et al. HMGB1 Increases Permeability of the Endothelial Cell Monolayer via RAGE and Src Family Tyrosine Kinase Pathways. Inflammation 35, 350–362 (2012). https://doi.org/10.1007/s10753-011-9325-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-011-9325-5

KEY WORDS

Navigation