Skip to main content
Log in

Elevated Expression of Liver X Receptor Alpha (LXRα) in Myocardium of Streptozotocin-Induced Diabetic Rats

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The present study was designed to investigate the myocardial expression of liver X receptor alpha (LXRα) in a streptozotocin (STZ)-induced diabetic rat model. Immunohistochemical staining, quantitative real-time RT-PCR, and Western blot analysis were used to determine the expression of LXRα in the myocardium of STZ-induced diabetic rats. The myocardial expression of LXRα target genes, long-chain acyl-CoA synthetase 3 (ACSL3), fatty acid transporter protein (FAT/CD36), ATP-binding cassette transporter A1 (ABCA1), and ABCG1 were also detected. Bisulfite sequencing analysis was employed to examine the methylation status of the CpG island at the LXRα promoter region in the myocardium of STZ-induced diabetic rats. We found that LXRα mRNA and protein expression in the left ventricles, right ventricles, and atria of diabetic rats were gradually increased during the progression of diabetic cardiomyopathy (DCM). The mRNA expression levels of ACSL3 and FAT/CD36 and the protein expression levels of ABCA1 and ABCG1 were also markedly increased in different heart chambers of diabetic rats. Moreover, there was a significant difference in the methylation status of LXRα gene between the ventricles of control and diabetic rats (P < 0.05). Our findings suggest that elevated expression of LXRα may be involved in the progression of DCM, and demethylation of LXRα is likely to be responsible for its increased expression in myocardial tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Spector, K.S. 1998. Diabetic cardiomyopathy. Clinical Cardiology 21(12): 885–887.

    Article  PubMed  CAS  Google Scholar 

  2. Boudina, S., and E.D. Abel. 2007. Diabetic cardiomyopathy revisited. Circulation 115(25): 3213–3223. doi:115/25/321310.1161/CIRCULATIONAHA.106.679597.

    Article  PubMed  Google Scholar 

  3. Luscher, T.F., M.A. Creager, J.A. Beckman, and F. Cosentino. 2003. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part II. Circulation 108(13): 1655–1661. doi:10.1161/01.CIR.0000089189.70578.E2.

    Article  PubMed  Google Scholar 

  4. Hayat, S.A., B. Patel, R.S. Khattar, and R.A. Malik. 2004. Diabetic cardiomyopathy: Mechanisms, diagnosis and treatment. Clinical Science (Lond) 107(6): 539–557. doi:10.1042/CS20040057.

    Article  CAS  Google Scholar 

  5. Adeghate, E. 2004. Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: A short review. Molecular and Cellular Biochemistry 261(1–2): 187–191.

    Article  PubMed  CAS  Google Scholar 

  6. Fang, Z.Y., J.B. Prins, and T.H. Marwick. 2004. Diabetic cardiomyopathy: Evidence, mechanisms, and therapeutic implications. Endocrine Reviews 25(4): 543–567. doi:10.1210/er.2003-0012.

    Article  PubMed  CAS  Google Scholar 

  7. Asbun, J., and F.J. Villarreal. 2006. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. Journal of the American College of Cardiology 47(4): 693–700. doi:10.1016/j.jacc.2005.09.050.

    Article  PubMed  CAS  Google Scholar 

  8. Fiordaliso, F., B. Li, R. Latini, E.H. Sonnenblick, P. Anversa, A. Leri, and J. Kajstura. 2000. Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. Laboratory Investigation 80(4): 513–527.

    PubMed  CAS  Google Scholar 

  9. Chen, S., T. Evans, K. Mukherjee, M. Karmazyn, and S. Chakrabarti. 2000. Diabetes-induced myocardial structural changes: Role of endothelin-1 and its receptors. Journal of Molecular and Cellular Cardiology 32(9): 1621–1629. doi:10.1006/jmcc.2000.1197.

    Article  PubMed  CAS  Google Scholar 

  10. Wolkart, G., H. Stessel, Z. Saad, M. Kirchengast, and F. Brunner. 2006. Cardioprotective effects of atrasentan, an endothelin-a receptor antagonist, but not of nitric oxide in diabetic mice with myocyte-specific overexpression of endothelial nitric oxide synthase. British Journal of Pharmacology 148(5): 671–681. doi:10.1038/sj.bjp.0706772.

    Article  PubMed  Google Scholar 

  11. Dai, H.Y., X.G. Guo, Z.M. Ge, Z.H. Li, X.J. Yu, M.X. Tang, and Y. Zhang. 2008. Elevated expression of urotensin II and its receptor in diabetic cardiomyopathy. Journal of Diabetes Complications 22(2): 137–143. doi:10.1016/j.jdiacomp.2006.10.008.

    Article  Google Scholar 

  12. Weng, Y., F. Shen, J. Li, Y. Shen, and X. Zhang. 2007. Expression changes of mitogen-activated protein kinase phosphatase-1 (MKP-1) in myocardium of streptozotocin-induced diabetic rats. Experimental and Clinical Endocrinology & Diabetes 115(7): 455–460. doi:10.1055/s-2007-973060.

    Article  CAS  Google Scholar 

  13. Apfel, R., D. Benbrook, E. Lernhardt, M.A. Ortiz, G. Salbert, and M. Pfahl. 1994. A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Molecular and Cellular Biology 14(10): 7025–7035.

    PubMed  CAS  Google Scholar 

  14. Song, C., J.M. Kokontis, R.A. Hiipakka, and S. Liao. 1994. Ubiquitous receptor: A receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proceedings of the National Academy of Sciences of the United States of America 91(23): 10809–10813.

    Article  PubMed  CAS  Google Scholar 

  15. Steffensen, K.R., and J.A. Gustafsson. 2004. Putative metabolic effects of the liver X receptor (LXR). Diabetes 53(Suppl 1): S36–S42.

    Article  PubMed  CAS  Google Scholar 

  16. Scott, J. 2007. The liver X receptor and atherosclerosis. The New England Journal of Medicine 357(21): 2195–2197. doi:10.1056/NEJMcibr075951.

    Article  PubMed  CAS  Google Scholar 

  17. Cao, G., K.R. Bales, R.B. DeMattos, and S.M. Paul. 2007. Liver X receptor-mediated gene regulation and cholesterol homeostasis in brain: Relevance to Alzheimer’s disease therapeutics. Current Alzheimer Research 4(2): 179–184.

    Article  PubMed  CAS  Google Scholar 

  18. Christopherson 2nd, K.W., and A. Landay. 2009. Liver X receptor alpha (LXRalpha) as a therapeutic target in chronic lymphocytic leukemia (CLL). Journal of Leukocyte Biology 86(5): 1019–1021. doi:10.1189/jlb.0509295.

    Article  PubMed  CAS  Google Scholar 

  19. Pommier, A.J., G. Alves, E. Viennois, S. Bernard, Y. Communal, B. Sion, G. Marceau, C. Damon, K. Mouzat, F. Caira, S. Baron, and J.M. Lobaccaro. 2010. Liver X receptor activation downregulates AKT survival signaling in lipid rafts and induces apoptosis of prostate cancer cells. Oncogene 29(18): 2712–2723. doi:10.1038/onc.2010.30.

    Article  PubMed  CAS  Google Scholar 

  20. Beltowski, J., and A. Semczuk. 2010. Liver X receptor (LXR) and the reproductive system—A potential novel target for therapeutic intervention. Pharmacological Reports 62(1): 15–27.

    PubMed  CAS  Google Scholar 

  21. Choe, S.S., A.H. Choi, J.W. Lee, K.H. Kim, J.J. Chung, J. Park, K.M. Lee, K.G. Park, I.K. Lee, and J.B. Kim. 2007. Chronic activation of liver X receptor induces beta-cell apoptosis through hyperactivation of lipogenesis: Liver X receptor-mediated lipotoxicity in pancreatic beta-cells. Diabetes 56(6): 1534–1543. doi:10.2337/db06-1059.

    Article  PubMed  CAS  Google Scholar 

  22. Meng, Z.X., J. Nie, J.J. Ling, J.X. Sun, Y.X. Zhu, L. Gao, J.H. Lv, D.Y. Zhu, Y.J. Sun, and X. Han. 2009. Activation of liver X receptors inhibits pancreatic islet beta cell proliferation through cell cycle arrest. Diabetologia 52(1): 125–135. doi:10.1007/s00125-008-1174-x.

    Article  PubMed  CAS  Google Scholar 

  23. Hayashi, K., R. Kojima, and M. Ito. 2006. Strain differences in the diabetogenic activity of streptozotocin in mice. Biological & Pharmaceutical Bulletin 29(6): 1110–1119. doi:JST.JSTAGE/bpb/29.1110.

    Article  CAS  Google Scholar 

  24. Tomlinson, K.C., S.M. Gardiner, R.A. Hebden, and T. Bennett. 1992. Functional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacological Reviews 44(1): 103–150.

    PubMed  CAS  Google Scholar 

  25. Ulven, S.M., K.T. Dalen, J.A. Gustafsson, and H.I. Nebb. 2005. LXR is crucial in lipid metabolism. Prostaglandins Leukotrienes and Essential Fatty Acids 73(1): 59–63. doi:10.1016/j.plefa.2005.04.009.

    Article  CAS  Google Scholar 

  26. Bugger, H., and E.D. Abel. 2009. Rodent models of diabetic cardiomyopathy. Dis Model Mech 2(9–10): 454–466. doi:10.1242/dmm.001941.

    Article  PubMed  CAS  Google Scholar 

  27. Chiu, H.C., A. Kovacs, D.A. Ford, F.F. Hsu, R. Garcia, P. Herrero, J.E. Saffitz, and J.E. Schaffer. 2001. A novel mouse model of lipotoxic cardiomyopathy. The Journal of Clinical Investigation 107(7): 813–822. doi:10.1172/JCI10947.

    Article  PubMed  CAS  Google Scholar 

  28. Weedon-Fekjaer, M.S., K.T. Dalen, K. Solaas, A.C. Staff, A.K. Duttaroy, and H.I. Nebb. 2010. Activation of LXR increases acyl-CoA synthetase activity through direct regulation of ACSl3 in human placental trophoblast cells. Journal of Lipid Research 51(7): 1886–1896. doi:10.1194/jlr.M004978.

    Article  PubMed  CAS  Google Scholar 

  29. Zhou, J., M. Febbraio, T. Wada, Y. Zhai, R. Kuruba, J. He, J.H. Lee, S. Khadem, S. Ren, S. Li, R.L. Silverstein, and W. Xie. 2008. Hepatic fatty acid transporter CD36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology 134(2): 556–567. doi:10.1053/j.gastro.2007.11.037.

    Article  PubMed  CAS  Google Scholar 

  30. Feinberg, A.P. 2007. Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143): 433–440. doi:10.1038/nature05919.

    Article  PubMed  CAS  Google Scholar 

  31. Feinberg, A.P. 2008. Epigenetics at the epicenter of modern medicine. JAMA 299(11): 1345–1350. doi:10.1001/jama.299.11.1345.

    Article  PubMed  CAS  Google Scholar 

  32. van Straten, E.M., V.W. Bloks, N.C. Huijkman, J.F. Baller, H. Meer, D. Lutjohann, F. Kuipers, and T. Plosch. 2010. The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 298(2): R275–R282. doi:10.1152/ajpregu.00413.2009.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y., Liu, G., Pan, Q. et al. Elevated Expression of Liver X Receptor Alpha (LXRα) in Myocardium of Streptozotocin-Induced Diabetic Rats. Inflammation 34, 698–706 (2011). https://doi.org/10.1007/s10753-010-9281-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-010-9281-5

KEY WORDS

Navigation