Skip to main content

Advertisement

Log in

Glutamine Reduces TNF-α by Enhancing Glutathione Synthesis in Lipopolysaccharide-Stimulated Alveolar Epithelial Cells of Rats

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

To investigate the role of glutathione (GSH) synthesis in the regulation on nuclear factor (NF)-κB activity and tumor necrosis factor-alpha (TNF-α) release by glutamine (GLN) in lipopolysaccharide (LPS)-stimulated alveolar type II (AT-II) epithelial cells of rat lungs. Primary cultured AT-II cells were pre-treated with various doses of GLN for 2, 8, 16, 24 h. At the 8 h time point before LPS stimulation, various doses of l-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GSH synthesis, were added with 10 mM GLN. Then the cells were stimulated with 1 μg/ml LPS for 24 h. The cells were obtained for GSH measurement. TNF-α level in the supernatant was determined by enzyme-linked immunosorbent assay. NF-κB activity was assessed by electrophoretic mobility shift assay. Eight hours before LPS exposure was the best time point for GLN’s enhancing GSH synthesis. LPS could significantly decrease the GSH level, increase NF-κB activation and TNF-α release in AT-II cells. Supplementation of GLN could increase the GSH level and attenuate the release of TNF-α in LPS-stimulated AT-II cells in a dose-dependant manner. And NF-κB activation also could be prevented by GLN. BSO could block the effect of GLN. As a precursor of GSH, glutamine could prevent the NF-κB activation and attenuate the release of TNF-α in LPS-stimulated AT-II cells and the effect may be mediated via GSH synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rahman, I., S. K. Biswas, L. A. Jimenez, M. Torres, and H. J. Forman. 2005. Glutathione, stress responses, and redox signaling in Lung Inflammation. Antioxid. Redox Signal 7:42–59 doi:10.1089/ars.2005.7.42.

    Article  PubMed  CAS  Google Scholar 

  2. Rahman, I. 2005. Redox signaling in the lungs. Antioxid. Redox Signal 7:1–5 doi:10.1089/ars.2005.7.1.

    Article  PubMed  CAS  Google Scholar 

  3. Cantin, A. M., S. L. North, R. C. Hubbard, and R. G. Crystal. 1987. Normal alveolar epithelial lining fluid contains high levels of glutathione. Am. J. Physiol. 63:152–157.

    CAS  Google Scholar 

  4. Rahman, I., B. Mulier, P. S. Gilmour, T. Watchorn, K. Donaldson, P. K. Jeffery et al. 2001. Oxidant-mediated lung epithelial cell tolerance: the role of intracellular glutathione and nuclear factor-kappaB. Biochem. Pharmacol. 62:787–794 doi:10.1016/S0006-2952(01)00702-X.

    Article  PubMed  CAS  Google Scholar 

  5. Coeffier, M., O. Miralles-Barrachina, F. Le Pessot, O. Lalaude, M. Daveau, A. Lavoinne et al. 2001. Influence of glutamine on cytokine production by human gut in vitro. Cytokine 13:148–154 doi:10.1006/cyto.2000.0813.

    Article  PubMed  CAS  Google Scholar 

  6. Wischmeyer, P. E., J. Riehm, K. D. Singleton, H. Ren, M. W. Musch, M. Kahana et al. 2003. Glutamine attenuates tumor necrosis factor-α release and enhances heat shock protein 72 in human peripheral blood mononuclear cells. Nutrition 19:1–6 doi:10.1016/S0899-9007(02)00839-0.

    Article  PubMed  CAS  Google Scholar 

  7. Singleton, K. D., V. E. Beckey, and P. E. Wischmeyer. 2005. Glutamine prevents activation of NF-κB and stress kinase pathways, attenuates inflammatory cytokine release, and prevents acute respiratory distress syndrome (ARDS). Shock 24:583–589 doi:10.1097/01.shk.0000185795.96964.71.

    Article  PubMed  CAS  Google Scholar 

  8. Cao, Y. H., Z. L. Feng, A. Hoos, and V. S. Klimberg. 1998. Glutamine enhances gut glutathione production. J. Parenter. Enter. Nutr. 22:224–227.

    Article  CAS  Google Scholar 

  9. Moon, M., T. Pritts, A. Salzman, J. Fischer, and P. O. Hasselgren. 1998. Glutamine prevents LPS-induced NF-κB activation in human intestinal epithelial cells. Gastroenterology 114:A1410–A1411 doi:10.1016/S0016-5085(98)85735-1.

    Article  Google Scholar 

  10. Babu, R., S. Eaton, D. P. Drake, L. Spitz, and A. Pierro. 2001. Glutamine and glutathione counteract the inhibitory effects of mediators of sepsis in neonatal hepatocytes. J. Pediatr. Surg. 36:282–286 doi:10.1053/jpsu.2001.20690.

    Article  PubMed  CAS  Google Scholar 

  11. Dobbs, L. G., R. Gonzalez, and M. C. Williams. 1986. An improved method for isolating type II cells in high yield and purity. Am. Rev. Respir. Dis. 134:141–145.

    PubMed  CAS  Google Scholar 

  12. Schreiber, E., P. Matthias, M. M. Müller, and W. Schaffner. 1989. Rapid detection of nuclear binding proteins with mini-extracts prepared from a small number of cell. Nucleic Acids Res. 17:6419 doi:10.1093/nar/17.15.6419.

    Article  PubMed  CAS  Google Scholar 

  13. Haddad, J. J. 2001. L-Buthionine-(S, R)-sulfoximine, an irreversible inhibitor of γ-glutamylcysteine sythetase, augments LPS-mediated pro-inflammatory cytokine biosynthesis: evidence for the implication of an IκB-α/NF-κB insensitive pathway. Eur. Cytokine Netw. 12:614–624.

    PubMed  CAS  Google Scholar 

  14. Lesur, O., K. Arsalane, and D. Lane. 1996. Lung alveolar epithelial cell migration in vitro: modulators and regulation processes. Am. J. Physiol. 270:L311–L319.

    PubMed  CAS  Google Scholar 

  15. Warshamana, G. S., M. Corti, and A. R. Brody. 2001. TNF-alpha, PDGF, and TGF-beta(1) expression by primary mouse bronchiolar-alveolar epithelial and mesenchymal cells: tnf-alpha induces TGF-beta(1). Exp. Mol. Pathol. 71:13–33 doi:10.1006/exmp.2001.2376.

    Article  PubMed  CAS  Google Scholar 

  16. Rahman, I. 2002. Oxidative stress, transcription factors and chromatin remodelling in lung inflammation. Biochem. Pharmacol. 64:935–942 doi:10.1016/S0006-2952(02)01153-X.

    Article  PubMed  CAS  Google Scholar 

  17. Hammarqvist, F., J. Luo, I. A. Cotgreave, K. Anderson, and J. Wernerman. 1997. Skeletal muscle glutathione is depleted in critically ill patients. Crit. Care Med. 25:78–84 doi:10.1097/00003246-199701000-00016.

    Article  PubMed  CAS  Google Scholar 

  18. Manhart, N., K. Vierlinger, A. Spittler, H. Bergmeister, T. Sautner, and E. Roth. 2000. Oral feeding with glutamine prevents lymphocyte and glutathione depletion of peyer’s patches in endotoxemic mice. Ann. Surg. 234:92–97 doi:10.1097/00000658-200107000-00014.

    Article  Google Scholar 

  19. Bunnel, E., and E. R. Pacht. 1993. Oxidised glutathione is increased in the alveolar fluid of patients with the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 148:1174–1178.

    Google Scholar 

  20. Luthen, R., J. H. Grendel, C. Niederau, and D. Haussinger. 1998. Trypsinogen activation and glutathione content are linked to pancreatic injury in models of bilary acute pancreatitis. Int. J. Pancreatol. 24:193–202.

    PubMed  CAS  Google Scholar 

  21. Biswas, S. K., D. Mcclure, L. A. Jimenez, I. L. Megson, and I. Rahman. 2005. Curcumin induces glutathione biosynthesis and inhibits NF-κB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radicals scavenging activity. Antioxid. Redox Signal 7:32–41 doi:10.1089/ars.2005.7.32.

    Article  PubMed  CAS  Google Scholar 

  22. Haddad, J. J., and S. C. Land. 2002. Redox signaling-mediated regulation of lipopolysaccharide-induced proinflammatory cytokine biosynthesis in alveolar epithelial cells. Antioxid. Redox Signal 4:179–193 doi:10.1089/152308602753625942.

    Article  PubMed  CAS  Google Scholar 

  23. Rouse, K., E. Nwokedi, J. E. Woodliff, J. Epstein, and V. S. Klimberg. 1995. Glutamine enhances selectivity of chemotherapy through changes in glutathione metabolism. Ann. Surg. 221:420–426 doi:10.1097/00000658-199504000-00014.

    Article  PubMed  CAS  Google Scholar 

  24. Goeters, C., A. Wenn, N. Mertes, C. Wempe, H. Van Aken, P. Stehle et al. 2004. Parenteral L-alanyl-L-glutamine improves 6-month outcome in critically ill patients. Crit. Care Med. 30:2032–2037 doi:10.1097/00003246-200209000-00013.

    Article  Google Scholar 

  25. Lai, Y. N., S. L. Yeh, M. T. Lin, H. F. Shang, C. L. Yeh, and W. J. Chen. 2004. Glutamine supplementation enhances mucosal immunity in rats with gut-derived sepsis. Nutrition 20:286–291 doi:10.1016/j.nut.2003.11.015.

    Article  PubMed  CAS  Google Scholar 

  26. Chang, W. K., K. D. Yang, H. Chuang, J. T. Jan, and M. F. Shaio. 2002. Glutamine protects activated human T cells from apoptosis by up-regulating glutathione and Bcl-2 levels. Clin. Immunol. 104:151–160 doi:10.1006/clim.2002.5257.

    Article  PubMed  CAS  Google Scholar 

  27. Glauser, M. P., G. Zanett, J. D. Baumgartner, and J. Cohen. 1991. Septic shock: pathogenesis. Lancet 338:732–736 doi:10.1016/0140-6736(91)91452-Z.

    Article  PubMed  CAS  Google Scholar 

  28. Pena, L. R., D. B. Hill, and C. J. McClain. 1999. Treatment with glutathione precursor decreases cytokine activity. J. Parenter. Enter. Nutr. 23:1–6 doi:10.1177/014860719902300101.

    Article  CAS  Google Scholar 

  29. Victor, V. M., M. Rocha, and M. D. L. Fuente. 2003. N-acetylcysteine protects mice from lethal endotoxemia by regulating the redox state of immune cells. Free Radic. Res. 37:919–929 doi:10.1080/1071576031000148727.

    Article  PubMed  CAS  Google Scholar 

  30. Wischmeyer, P. E., M. Kahana, R. Wolfson, H. Ren, M. M. Musch, and E. B. Chang. 2001. Glutamine reduces cytokine release, organ damage, and mortality in a rat model of endotoxemia. Shock 16:398–402.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (30500404) and the Jiangsu Provincial Natural Science Foundation (BK2006530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Wang, X., Wang, W. et al. Glutamine Reduces TNF-α by Enhancing Glutathione Synthesis in Lipopolysaccharide-Stimulated Alveolar Epithelial Cells of Rats. Inflammation 31, 344–350 (2008). https://doi.org/10.1007/s10753-008-9084-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-008-9084-0

KEY WORDS

Navigation