Skip to main content

Advertisement

Log in

Analysis of Signal Transduction Pathways in Macrophages Using Expression Vectors with CMV Promoters: A Cautionary Tale

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The cytomegalovirus (CMV) major immediate-early promoter is a strong promoter used for both in vitro and in vivo expression of proteins in signal transduction and gene therapy studies. CMV activity is induced by external stimuli such as endotoxin from Gram-negative bacteria (LPS), TNF-α and phorbol esters. This inducibility poses problems when this promoter is used to drive the expression of either wild type or dominant negative mutated proteins as tools in signal transduction studies. This report draws attention to the problem associated with this widely used approach. The role of NF-κB and Hypoxia Inducible Factor-1α (HIF-1α) in the transcriptional regulation of Vascular Endothelial Growth Factor (VEGF) in macrophages was investigated using CMV-promoter-driven expression of either wild type or dominant negative proteins involved in these pathways. Difficulties encountered while interpreting the data due to the inducibility of the CMV promoter by LPS are highlighted in this report and provide a cautionary note for the evaluation of data acquired using this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmidt, E. V., G. Christoph, R. Zeller, and P. Leder. 1990. The cytomegalovirus enhancer: a pan-active control element in transgenic mice. Mol. Cell. Biol. 10:4406–4411.

    PubMed  CAS  Google Scholar 

  2. Loser, P., G. S. Jennings, M. Strauss, and V. Sandig. 1998. Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NFkappaB. J. Virol. 72:180–190.

    PubMed  CAS  Google Scholar 

  3. Bondeson, J., K. A. Browne, F. M. Brennan, B. M. Foxwell, and M. Feldmann. 1999. Selective regulation of cytokine induction by adenoviral gene transfer of IkappaBalpha into human macrophages: Lipopolysaccharide-induced, but not zymosan-induced, proinflammatory cytokines are inhibited, but IL-10 is nuclear factor-kappaB independent. J. Immunol. 162:2939–2945.

    PubMed  CAS  Google Scholar 

  4. Boshart, M., F. Weber, G. Jahn, K. Dorsch-Hasler, B. Fleckenstein, and W. Schaffner. 1985. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell. 41:521–530.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, B. H., X. Wang, Y. X. Ma, and S. Wang. 2004. CMV enhancer/human PDGF-beta promoter for neuron-specific transgene expression. Gene. Ther. 11:52–60.

    Article  PubMed  CAS  Google Scholar 

  6. Lee, Y., W. J. Sohn, D. S. Kim, and H. J. Kwon. 2004. NF-kappaB- and c-Jun-dependent regulation of human cytomegalovirus immediate-early gene enhancer/promoter in response to lipopolysaccharide and bacterial CpG-oligodeoxynucleotides in macrophage cell line RAW 264.7. Eur. J. Biochem. 271:1094–1105.

    Article  PubMed  CAS  Google Scholar 

  7. Escher, G., A. Hoang, S. Georges, U. Tchoua, A. El-Osta, Z. Krozowski, and D. Sviridov. 2005. Demethylation using the epigenetic modifier, 5-azacytidine, increases the efficiency of transient transfection of macrophages. J. Lipid. Res. 46:356–365.

    Article  PubMed  CAS  Google Scholar 

  8. Clesham, G. J., H. Browne, S. Efstathiou, and P. L. Weissberg. 1996. Enhancer stimulation unmasks latent gene transfer after adenovirus-mediated gene delivery into human vascular smooth muscle cells. Circ. Res. 79:1188–1195.

    PubMed  CAS  Google Scholar 

  9. Niller, H. H., and L. Hennighausen. 1991. Formation of several specific nucleoprotein complexes on the human cytomegalovirus immediate early enhancer. Nucleic Acids Res. 19:3715–3721.

    PubMed  CAS  Google Scholar 

  10. Fickenscher, H., T. Stamminger, R. Ruger, and B. Fleckenstein. 1989. The role of a repetitive palindromic sequence element in the human cytomegalovirus major immediate early enhancer. J. Gen. Virol. 70( Pt 1):107–123.

    PubMed  CAS  Google Scholar 

  11. Stamminger, T., H. Fickenscher, and B. Fleckenstein. 1990. Cell type-specific induction of the major immediate early enhancer of human cytomegalovirus by cyclic AMP. J. Gen. Virol. 71( Pt 1):105–113.

    Article  PubMed  CAS  Google Scholar 

  12. Sambucetti, L. C., J. M. Cherrington, G. W. Wilkinson, and E. S. Mocarski. 1989. NF-kappa B activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. Embo. J. 8:4251–4258.

    PubMed  CAS  Google Scholar 

  13. Hennighausen, L., and B. Fleckenstein. 1986. Nuclear factor 1 interacts with five DNA elements in the promoter region of the human cytomegalovirus major immediate early gene. Embo. J. 5:1367–1371.

    PubMed  CAS  Google Scholar 

  14. Hunninghake, G. W., M. M. Monick, B. Liu, and M. F. Stinski. 1989. The promoter-regulatory region of the major immediate-early gene of human cytomegalovirus responds to T-lymphocyte stimulation and contains functional cyclic AMP-response elements. J. Virol. 63:3026–3033.

    PubMed  CAS  Google Scholar 

  15. Jeang, K. T., D. R. Rawlins, P. J. Rosenfeld, J. H. Shero, T. J. Kelly, and G. S. Hayward. 1987. Multiple tandemly repeated binding sites for cellular nuclear factor 1 that surround the major immediate-early promoters of simian and human cytomegalovirus. J. Virol. 61:1559–1570.

    PubMed  CAS  Google Scholar 

  16. Meier, J. L., and M. F. Stinski. 1996. Regulation of human cytomegalovirus immediate-early gene expression. Intervirology. 39:331–342.

    PubMed  CAS  Google Scholar 

  17. Thomsen, D. R., R. M. Stenberg, W. F. Goins, and M. F. Stinski. 1984. Promoter-regulatory region of the major immediate early gene of human cytomegalovirus. Proc. Natl. Acad. Sci. USA 81:659–663.

    Article  PubMed  CAS  Google Scholar 

  18. Sun, B., G. Harrowe, C. Reinhard, C. Yoshihara, K. Chu, and S. Zhuo. 2001. Modulation of human cytomegalovirus immediate-early gene enhancer by mitogen-activated protein kinase kinase-1. J. Cell. Biochem. 83:563–573.

    Article  PubMed  CAS  Google Scholar 

  19. Prosch, S., A. K. Heine, H. D. Volk, and D. H. Kruger. 2001. CCAAT/enhancer-binding proteins alpha and beta negatively influence the capacity of tumor necrosis factor alpha to up-regulate the human cytomegalovirus IE1/2 enhancer/promoter by nuclear factor kappaB during monocyte differentiation. J. Biol. Chem. 276:40712–40720.

    Article  PubMed  CAS  Google Scholar 

  20. Angulo, A., C. Suto, R. A. Heyman, and P. Ghazal. 1996. Characterization of the sequences of the human cytomegalovirus enhancer that mediate differential regulation by natural and synthetic retinoids. Mol. Endocrinol. 10:781–793.

    Article  PubMed  CAS  Google Scholar 

  21. Chan, Y. J., C. J. Chiou, Q. Huang, and G. S. Hayward. 1996. Synergistic interactions between overlapping binding sites for the serum response factor and ELK-1 proteins mediate both basal enhancement and phorbol ester responsiveness of primate cytomegalovirus major immediate-early promoters in monocyte and T-lymphocyte cell types. J. Virol. 70:8590–8605.

    PubMed  CAS  Google Scholar 

  22. Laegreid, A., L. Thommesen, T. G. Jahr, A. Sundan, and T. Espevik. 1995. Tumor necrosis factor induces lipopolysaccharide tolerance in a human adenocarcinoma cell line mainly through the TNF p55 receptor. J. Biol. Chem. 270:25418–25425.

    Article  PubMed  CAS  Google Scholar 

  23. Simpson, A. J., G. A. Cunningham, D. J. Porteous, C. Haslett, and J. M. Sallenave. 2001. Regulation of adenovirus-mediated elafin transgene expression by bacterial lipopolysaccharide. Hum. Gene. Ther. 12:1395–1406.

    Article  PubMed  CAS  Google Scholar 

  24. Takeda, K., and S. Akira. 2005. Toll-like receptors in innate immunity. Int. Immunol. 17:1–14.

    Article  PubMed  CAS  Google Scholar 

  25. Smith, M. F. Jr, A. Mitchell, G. Li, S. Ding, A. M. Fitzmaurice, K. Ryan, S. Crowe, and J. B. Goldberg. 2003. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. J. Biol. Chem. 278:32552–32560.

    Article  PubMed  CAS  Google Scholar 

  26. Byrd-Leifer, C. A., E. F. Block, K. Takeda, S. Akira, A. Ding. 2001. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur. J. Immunol. 31:2448–2457.

    Article  PubMed  CAS  Google Scholar 

  27. Wessells, J., M. Baer, H. A. Young, E. Claudio, K. Brown, U. Siebenlist, and P. F. Johnson. 2004. BCL-3 and NF-kappaB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages. J. Biol. Chem. 279:49995–50003.

    Article  PubMed  CAS  Google Scholar 

  28. Brint, E. K., D. Xu, H. Liu, A. Dunne, A. N. McKenzie, L. A. O'Neill, and F. Y. Liew. 2004. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat. Immunol. 5:373–379.

    Article  PubMed  CAS  Google Scholar 

  29. Liu, H., P. Sidiropoulos, G. Song, L. J. Pagliari, M. J. Birrer, B. Stein, J. Anrather, and R. M. Pope. 2000. TNF-alpha gene expression in macrophages: Regulation by NF-kappa B is independent of c-Jun or C/EBP beta. J. Immunol. 164:4277–4285.

    PubMed  CAS  Google Scholar 

  30. Varley, A. W., M. G. Coulthard, R. S. Meidell, R. D. Gerard, and R. S. Munford. 1995. Inflammation-induced recombinant protein expression in vivo using promoters from acute-phase protein genes. Proc. Natl. Acad. Sci. USA 92:5346–5350.

    Article  PubMed  CAS  Google Scholar 

  31. Swantek, J. L., M. H. Cobb, and T. D. Geppert. 1997. Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: Glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Mol. Cell. Biol. 17:6274–6282.

    PubMed  CAS  Google Scholar 

  32. Delerive, P., K. De Bosscher, S. Besnard, W. Vanden Berghe, J. M. Peters, F. J. Gonzalez, J. C. Fruchart, A. Tedgui, G. Haegeman, and B. Staels. 1999. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J. Biol. Chem. 274:32048–32054.

    Article  PubMed  CAS  Google Scholar 

  33. O'Connell, M. A., B. L. Bennett, F. Mercurio, A. M. Manning, and N. Mackman. 1998. Role of IKK1 and IKK2 in lipopolysaccharide signaling in human monocytic cells. J. Biol. Chem. 273:30410–30414.

    Article  PubMed  Google Scholar 

  34. Liu, Y. W., H. P. Tseng, L. C. Chen, B. K. Chen, and W. C. Chang. 2003. Functional cooperation of simian virus 40 promoter factor 1 and CCAAT/enhancer-binding protein beta and delta in lipopolysaccharide-induced gene activation of IL-10 in mouse macrophages. J. Immunol. 171:821–828.

    PubMed  CAS  Google Scholar 

  35. Baer, M., A. Dillner, R. C. Schwartz, C. Sedon, S. Nedospasov, and P. F. Johnson. 1998. Tumor necrosis factor alpha transcription in macrophages is attenuated by an autocrine factor that preferentially induces NF-kappaB p50. Mol. Cell. Biol. 18:5678–5689.

    PubMed  CAS  Google Scholar 

  36. Forsythe, J. A., B. H. Jiang, N. V. Iyer, F. Agani, S. W. Leung, R. D. Koos, and G. L. Semenza. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16:4604–4613.

    PubMed  CAS  Google Scholar 

  37. Shima, D. T., U. Deutsch, and P. A. D'Amore. 1995. Hypoxic induction of vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability. FEBS Lett. 370:203–208.

    Article  PubMed  CAS  Google Scholar 

  38. Liu, Y., S. R. Cox, T. Morita, and S. Kourembanas. 1995. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ. Res. 77:638–643.

    PubMed  CAS  Google Scholar 

  39. Levy, A. P., N. S. Levy, S. Wegner, and M. A. Goldberg. 1995. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. Biol. Chem. 270:13333–13340.

    Article  PubMed  CAS  Google Scholar 

  40. Xiong, M., G. Elson, D. Legarda, and S. J. Leibovich. 1998. Production of vascular endothelial growth factor by murine macrophages: Regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am. J. Pathol. 153:587–598.

    PubMed  CAS  Google Scholar 

  41. Ramanathan, M., A. Giladi, and S. J. Leibovich. 2003. Regulation of vascular endothelial growth factor gene expression in murine macrophages by nitric oxide and hypoxia. Exp. Biol. Med. (Maywood) 228:697–705.

    CAS  Google Scholar 

  42. Traenckner, E. B., H. L. Pahl, T. Henkel, K. N. Schmidt, S. Wilk, and P. A. Baeuerle. 1995. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. Embo. J. 14:2876–2883.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by a grant from the National Institute of General Medicine Sciences of the National Institutes of Health (NIH) (GM068636-01 to S.J.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Joseph Leibovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanathan, M., Haskó, G. & Leibovich, S.J. Analysis of Signal Transduction Pathways in Macrophages Using Expression Vectors with CMV Promoters: A Cautionary Tale. Inflammation 29, 94–102 (2005). https://doi.org/10.1007/s10753-006-9005-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-006-9005-z

Key words

Navigation