Skip to main content
Log in

Proteolytic Enzymes Activities in Patients After Myocardial Infarction Correlate with Serum Concentration of TGF-β

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) is caused by occlusion of coronary artery and insufficient oxygen supply to a certain area of myocardium. Its necrosis appears as a result of MI. The process of tissue repair after MI is very complicated and it is influenced by numerous factors, including growth factors and proteolytic enzymes. The aim of the study was to determine serum transforming growth factor β (TGF-β) concentration on day 2 and 7 after MI and to asses the relationship of this growth factor with serum proteolytic activity of collagenase and elastase. In addition, the effect of fibrynolytic treatment on these factors was evaluated. About 100 patients with MI were enrolled to the study. The control group consisted of 50 healthy individuals. We observed that TGF-β1 concentration correlated positively with collagenase activity on the second day after MI and that it also correlated positively with elastase activity on day 2 and 7 after MI. Moreover, treatment with streptokinase (SK) caused a significant increase of TGF-β serum concentration. Our data indicate that TGF-β1 may be one of the factors involved in tissue repair process after MI. Its effect seems to be mediated by collagenase and elastase and may change with the time that elapsed after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ristow, H. J. 1986. BSC-1 growth factor inhibitor/type β transforming growth factor is a strong inhibitor of thymocyte proliferation. Proc. Natl. Acad. Sci. USA. 83:5531–5533.

    PubMed  Google Scholar 

  2. Blobe, G. C., W. P. Schiemann, and H. F. Lodish. 2000. Role of transforming growth factor β in human disease. N. Engl. J. Med. 342:1350–1358.

    Article  PubMed  Google Scholar 

  3. Cotran, R. S., V. Kumar, and T. Collins. 1999. Tissue Repair: Cellular Growth, Fibrosis and Wound Healing. W: Robbins pathologic basis of disease, wyd 6, W.B. Saunders Company, Philadelphia, 89–112.

    Google Scholar 

  4. Border, W. A., S. Okuda, L. R. Languino, and E. Ruoslahti. 1990. Transforming growth factor- beta regulates production of proteoglykans by mesangial cells. Kidney. Int. 37:689–693.

    PubMed  Google Scholar 

  5. Epstein, F. H. 1994. Transforming growth factor beta in tissue fibrosis. N. Eng. J. Med. 19:1286–1294.

    Google Scholar 

  6. Dauterman, K. and T. Chou. 2002. Acute Myocardial Infarction. In: Conn’s Current Therapy 2002, R. E. Rakiel, E. T. Bope ed., W. B. Saunders Company, Philadelphia, 330–331.

    Google Scholar 

  7. Danielpour, D. 1993. Improved sandwich enzyme-linked Immunosorbent Assays for TGFβ1. J. Immunol. Methods 158:17–25.

    Article  PubMed  Google Scholar 

  8. Shoen, F. J. 1999. The Heart. In: The Pathologic Basis of Disease, 6th edn., R. S. Cotran, V. Kumar, and T. Collins, eds. W. B. Saunders Company, Philadelphia, 543–600.

    Google Scholar 

  9. Sun, Y., J. Q. Zhang, J. Zhang, and S. Lamparter. 2000. Cardiac remodeling by fibrous tissue after infarction in rats. J. Lab. Clin. Med. 135:316–323.

    Article  PubMed  Google Scholar 

  10. Willems, I. E. M. G., M. G. Havenith, J. G. R. De Mey, and M. J. A. P. Daemen. 1994. The α-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol. 145:868–875.

    PubMed  Google Scholar 

  11. Weber, K. T. 1989. Cardiac intrstitium in health and disease: The fibrillar collagen network. J. Am. Coll Cardiol. 13:1637–1652.

    PubMed  Google Scholar 

  12. Tiggelman, A. M. B. C., C. Linthorst, W. Boers, H. S. Brand, and R. A. F. M. Chamuleau. 1997. Transforming growth factor-beta-induced collagen synthesis by human liver myofibroblasts is inhibited by alpha-2-macroglobulin. J. Hepatol. 26:1220–1228.

    Article  PubMed  Google Scholar 

  13. Sun, Y., and K. T. Weber. 1996. Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J. Mol. Cell. Cardiol. 28:851–858.

    Article  PubMed  Google Scholar 

  14. Desmouliere, A., and G. Gabbiani. 1994. Modulation of fibroblastic cytoskeletal features during pathological situations: The role of extracellular matrix and cytokines. Cell. Motil. Cytoskeleton 29:195–203.

    Article  PubMed  Google Scholar 

  15. Darby, I., O. Skalli, and G. Gabbiani. 1990. α-smooth muscle actin is transiently expressed by miofibroblast during experimental wound healing. Lab. Invest. 63:21–29.

    PubMed  Google Scholar 

  16. Ravitz, M. J., and C. E. Wenner. 1997. Cyclin-dependent kinase regulation during G1 phase and cell cycle regulation by TGF-β. Adv. Cancer Res. 71:165–207.

    PubMed  Google Scholar 

  17. Sanderson, N., V. Factor, P. Nagy, J. Kopp, P. Kondaiah, L. Wakefield, A. B. Roberts, M. B. Sporn, and S. S. Thorgeirsson. 1995. Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesion. Proc. Natl. Acad. Sci. USA. 92:2572–2576.

    PubMed  Google Scholar 

  18. Rappolee, D. A., D. Mark, M. J. Banda, and Z. Werb. 1988. Wound macrophages express TGF-α and other growth factors in vivo: Analysis by mRNA phenotyping. Science 241:708–712.

    PubMed  Google Scholar 

  19. Olivetti, G., J. M. Capasso, E. H. Sonnenblick, and P. Anversa. 1990. Side-to-side sllipage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ. Res. 67:23–28.

    PubMed  Google Scholar 

  20. Takahashi, S., A. C. Barry, and S. M. Factor. 1990. Collagen degradation in ischaemic rat hearts. Biochem. J. 265:233–241.

    PubMed  Google Scholar 

  21. Rohde, L. E., A. Ducharme, L. H. Arroyo, M. Aikawa, G. H. Sukhova, A. Lopez-Anaya, K. F. McClure, P. G. Mitchell, P. Libby, and R. T. Lee. 1999. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental infarction in mice. Circulation 99:3063–3070.

    PubMed  Google Scholar 

  22. Montfort, I., and R. Perez -Tamyao. 1975. The distribution of collagenase in normal rat tissue. J. Histochem. Cytochem. 23:910–920.

    PubMed  Google Scholar 

  23. Weiss, S. J. 1989. Tissue destruction by neutrophils. N. Engl. J. Med. 303:365–376.

    Google Scholar 

  24. Jolly, S. R., W. J. Kane, B. G. Hook, G. D. Abrams, S. L. Kunkel, and B. R. Lucchesi. 1986. Reduction of myocardial infarct size by neutrophil depletion: Effect of duration of occlusion. Am. Heart J. 112:682–690.

    Article  PubMed  Google Scholar 

  25. Lindsey, M. L., J. Gannon, M. Aikawa, F. J. Schoen, E. Rabkin, L. Lopresti-Morrow, J. Crawford, S. Black, P. Libby, P. G. Mitchell, and R. T. Lee. 2002. Selective matrix metalloproteinase inhibition reduces left ventricular remodeling but does not inhibit angiogenesis after myocardial infarction. Circulation 105:753–758.

    Article  PubMed  Google Scholar 

  26. Ohlsson, K. 1977. The extracellular release of granulocytes collagenase and elastase during phagocytosis and inflammatory process. Scand. J. Hematol. 19:145–161.

    Google Scholar 

  27. Tiefenbacher, C. P., M. Ebert, F. Niroomand, S. Batkai, H. Tillmanns, R. Zimmermann, and W. Kubler. 1997. Inhibition of elastase improves myocardial function after repetitive ischaemia and myocardial infarction in the rat heart. Pflugers Arch. 433:563–570.

    PubMed  Google Scholar 

  28. Lechleitner, P., J. Mair, N. Genser, F. Dienstl, and B. Puschendorf. 1993. Granulocyte elastase in acute myocardial infarction. Z. Kardiol. 82:641–647.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Czarkowska-P¸czek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czarkowska-P¸czek, B., Przybylski, J., Marciniak, A. et al. Proteolytic Enzymes Activities in Patients After Myocardial Infarction Correlate with Serum Concentration of TGF-β. Inflammation 28, 279–284 (2004). https://doi.org/10.1007/s10753-004-6051-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-004-6051-2

Key Words

Navigation