Skip to main content
Log in

Narrowband solid state vuv coherent source for laser cooling of antihydrogen

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We describe the design and performance of a solid-state pulsed source of narrowband (< 100 MHz) Lyman-α radiation designed for the purpose of laser cooling magnetically trapped antihydrogen. Our source utilizes an injection seeded Ti:Sapphire amplifier cavity to generate intense radiation at 729.4 nm, which is then sent through a frequency doubling stage and a frequency tripling stage to generate 121.56 nm light. Although the pulse energy at 121.56 nm is currently limited to 12 nJ with a repetition rate of 10 Hz, we expect to obtain greater than 0.1 μJ per pulse at 10 Hz by further optimizing the alignment of the pulse amplifier and the efficiency of the frequency tripling stage. Such a power will be sufficient for cooling a trapped antihydrogen atom from 500 mK to 20mK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andresen, G., Ashkezari, M., Baquero-Ruiz, M., Bertsche, W., Bowe, P.D., Butler, E., Cesar, C., Chapman, S., Charlton, M., Deller, A., et al.: Trapped antihydrogen. Nature 468(7324), 673–676 (2010)

    Article  ADS  Google Scholar 

  2. Batishche, S., Burakov, V., Kostenich, Y., Mostovnikov, V., Naumenkov, P., Tarasenko, N., Gladushchak, V., Moshkalev, S., Razdobarin, G., Semenov, V., Shreider, E.: Optimal conditions for third-harmonic generation in gas mixtures. Opt. Commun. 38(1), 71–74 (1981)

    Article  ADS  Google Scholar 

  3. Cabaret, L., Delsart, C., Blondel, C.: High resolution spectroscopy of the hydrogen lyman-line stark structure using a vuv single mode pulsed laser system. Opt. Commun. 61(2), 116–119 (1987)

    Article  ADS  Google Scholar 

  4. Cotter, D.: Tunable narrow-band coherent VUV source for the lyman-alpha region. Opt. Commun. 31(3), 397–400 (1979)

    Article  ADS  Google Scholar 

  5. Donnan, P.H., Fujiwara, M.C., Robicheaux, F.: A proposal for laser cooling antihydrogen atoms. J. Phys. B: Atomic Mol. Opt. Phys. 46(2), 025–302 (2013)

    Article  Google Scholar 

  6. Dupré, P.: Modeling a nanosecond quasi-fourier-transform limited ti: Sa laser source. Eur. Phys. J. Appl. Phys. 40(03), 275–291 (2007)

    Article  ADS  Google Scholar 

  7. Dupré, P., Miller, T.A.: Quasi-fourier-transform limited, scannable, high energy titanium-sapphire laser source for high resolution spectroscopy. Rev. Sci. Instrum. 78(3), 033102 (2007)

    Article  ADS  Google Scholar 

  8. Eikema, K.S.E., Walz, J., Hänsch, T.W.: Continuous wave coherent lyman-α radiation. Phys. Rev. Lett. 83, 3828–3831 (1999)

    Article  ADS  Google Scholar 

  9. Hilbig, R., Wallenstein, R.: Enhanced production of tunable vuv radiation by phase-matched frequency tripling in krypton and xenon. IEEE J. Quantum Electron. 17(8), 1566–1573 (1981)

    Article  ADS  Google Scholar 

  10. Langer, H., Puell, H., Röhr, H.: Lyman alpha (1216 å) generation in krypton. Opt. Commun. 34(1), 137–142 (1980)

    Article  ADS  Google Scholar 

  11. Mahon, R., Tomkins, F.S., Kelleher, D.E., McIlrath, T.J.: Four-wave sum mixing in beryllium around hydrogen lyman-α. Opt. Lett. 4(11), 360–362 (1979)

    Article  ADS  Google Scholar 

  12. Mahon, R., Yiu, Y.M.: Generation of lyman-α radiation in phase-matched rare-gas mixtures. Opt. Lett. 5(7), 279–281 (1980)

    Article  ADS  Google Scholar 

  13. McKee, T.J., Stoicheff, B.P., Wallace, S.C.: Tunable, coherent radiation in the lyman-α region (1210–1290 å) using magnesium vapor. Opt. Lett. 3(6), 207–208 (1978)

    Article  ADS  Google Scholar 

  14. Michan, J.M., Fujiwara, M.C., Momose, T.: Development of a lyman-laser system for spectroscopy and laser cooling of antihydrogen. Hyperfine Interact. 228(1-3), 77–80 (2014)

    Article  Google Scholar 

  15. Scheid, M., Kolbe, D., Markert, F., Hänsch, T.W., Walz, J.: Continuous-wave lyman-α generation with solid-state lasers. Opt. Express 17(14), 11,274–11,280 (2009)

    Article  Google Scholar 

  16. Setija, I.D., Werij, H.G.C., Luiten, O.J., Reynolds, M.W., Hijmans, T.W., Walraven, J.T.M.: Optical cooling of atomic hydrogen in a magnetic trap. Phys. Rev. Lett. 70, 2257–2260 (1993)

    Article  ADS  Google Scholar 

  17. Wallenstein, R.: Generation of narrowband tunable VUV radiation at the lyman-wavelength. Opt. Commun. 33(1), 119–122 (1980)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamasa Momose.

Additional information

Proceedings of the 6th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2014), Takamatsu, Japan, 1-5 December 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michan, J.M., Polovy, G., Madison, K.W. et al. Narrowband solid state vuv coherent source for laser cooling of antihydrogen. Hyperfine Interact 235, 29–36 (2015). https://doi.org/10.1007/s10751-015-1186-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-015-1186-0

Keywords

Navigation