Skip to main content
Log in

Resonance spectroscopy of gravitational states of antihydrogen

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We study a method to induce resonant transitions between antihydrogen (\(\bar {H}\)) quantum states above a material surface in the gravitational field of the Earth. The method consists in applying a gradient of magnetic field which is temporally oscillating with the frequency equal to a frequency of a transition between gravitational states of antihydrogen. Corresponding resonant change in a spatial density of antihydrogen atoms can be measured as a function of the frequency of applied field. We estimate an accuracy of measuring antihydrogen gravitational states spacing and show how a value of the gravitational mass of the \(\bar {H}\) atom can be deduced from such a measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andresen, G.B., et al.: Nature 468, 673 (2010)

    Article  ADS  Google Scholar 

  2. Alpha Collaboration, Charman, A.E.: Nat. Commun. 4, 1785 (2013)

    Article  Google Scholar 

  3. Pérez, P., et al.: Proposal to measure the gravitational behaviour of antihydrogen at rest gbar. 2011. http://cdsweb.cern.ch/record/1386684/files/SPSC-P-342.pdf

  4. Gabrielse, G., et al.: CERN-SPSC-2010-006 / SPSC-SR-057

  5. Cesar, C.L. et al.: AIP Conf. Proc. 770, 33 (2005)

    Article  ADS  Google Scholar 

  6. Kellerbauer, A. et al.: Nucl. Instr. Meth. B 266, 351 (2008)

    Article  ADS  Google Scholar 

  7. Voronin, A.Yu., Froelich, P., Nesvizhevsky, V.V.: Phys. Rev. A 83, 032903 (2011)

    Article  ADS  Google Scholar 

  8. Lamb, W.E.: Phys. Rev. 85, 259 (1952)

    Article  ADS  Google Scholar 

  9. Gorkov, L.P., Dzyaloshinskii, I.E.: Sov. Phys. JETP 26, 449 (1968)

    ADS  Google Scholar 

  10. Lozovik, Yu.E., Volkov, S.Yu.: Phys. Rev. A 70, 023410 (2004)

    Article  ADS  Google Scholar 

  11. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Nonrelativistic Theory. Pergamon, London (1965)

    Google Scholar 

  12. Nesvizhevsky, V.V., Boerner, H.G., Petoukhov, A.K., Abele, H., Baeßler, S., Rueß, F.J., Stoeferle, Th., Westphal, A., Gagarski, A.M., Petrov, G.A., Strelkov, A.V.: Nature 415, 297 (2002)

    Article  ADS  Google Scholar 

  13. Nesvizhevsky, V.V. et al.: Nucl. Instr. Meth. A 440, 754 (2000)

    Article  ADS  Google Scholar 

  14. Nesvizhevsky, V.V. et al.: Phys. Rev. D 67, 102002 (2003)

    Article  ADS  Google Scholar 

  15. Voronin, A.Yu. et al.: Phys. Rev. D 73, 044029 (2006)

    Article  ADS  Google Scholar 

  16. Nesvizhevsky, V.V. et al.: Eur. Phys. J. C 40, 479 (2005)

    Article  ADS  Google Scholar 

  17. Voronin, A. et al.: Phys. Rev. D 73, 044029 (2006)

    Article  ADS  Google Scholar 

  18. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions, 10th edn. Dover Publications, New York (1972)

  19. Voronin, A.Yu., Froelich, P., Zygelman, B.: Phys. Rev. A 72, 062903 (2005)

    Article  ADS  Google Scholar 

  20. Dufour, G., Grardin, A., Gurout, R., Lambrecht, A., Nesvizhevsky, V.V., Reynaud, S., Voronin, A.Yu.: Phys. Rev. A 87, 012901 (2013)

    Article  ADS  Google Scholar 

  21. Dufour, G., Gurout, R., Lambrecht, A., Nesvizhevsky, V.V., Reynaud, S., Voronin, A.Yu.: Phys. Rev. A 87, 022506 (2013)

    Article  ADS  Google Scholar 

  22. Voronin, A.Yu., Froelich, P.: J. Phys. B: At. Mol. Opt. Phys. 38, L301 (2005)

    Article  ADS  Google Scholar 

  23. Kreuz, M., et.al.: Nucl. Instr. Meth A 611, 326 (2009)

    Article  ADS  Google Scholar 

  24. Dufour, G., Lambrecht, A., Nesvizhevsky, V.V., Reynaud, S., Voronin, A.Yu.: Eur. Phys. J. C 74, 2731 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Voronin.

Additional information

Proceedings of the 11th International Conference on Low Energy Antiproton Physics (LEAP 2013) held in Uppsala, Sweden, 10–15 June, 2013

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronin, A.Y., Nesvizhevsky, V.V., Dalkarov, O.D. et al. Resonance spectroscopy of gravitational states of antihydrogen. Hyperfine Interact 228, 133–139 (2014). https://doi.org/10.1007/s10751-014-1023-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-014-1023-x

Keywords

Navigation