Skip to main content
Log in

Entanglement in nuclear quadrupole resonance

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Entangled quantum states are an important element of quantum information techniques. We determine the requirements for states of quadrupolar nuclei with spins >1/2 to be entangled. It was shown that entanglement is achieved at low temperature by applying a magnetic field to quadrupolar nuclei possessing quadrupole moments, which interact with the electricfield gradient produced by the charge distribution in their surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information, vols. I and II. World Scientific (2007)

  2. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa R., Peres A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G.: In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. Bangalore, India (1984)

  6. Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: Phys. Rev. Lett. 92, 107902-1 (2004)

    Article  ADS  Google Scholar 

  7. Binicioglu, S., Can, M.A., Klyachko, A.A., Shumovsky, A.S.: Found. Phys. 37, 1253 (2007)

    Article  ADS  Google Scholar 

  8. Lee, H.-W., Kim, J.: Phys. Rev. A 63, 012305 (2000)

    Article  ADS  Google Scholar 

  9. Lee, J.W., Lee, E.K., Chung, Y.W., Lee, H.W., Kim, J.: Phys. Rev. A 68, 012324 (2003)

    Article  ADS  Google Scholar 

  10. van Enk, S.J.: Phys. Rev. A 72, 064306 (2005)

    Article  ADS  Google Scholar 

  11. Can, M.A., Klyachko, A., Shumovsky, A.: J. Opt. B: Quantum Semiclass. Opt. 7, L1–L3 (2005)

    Article  MathSciNet  Google Scholar 

  12. Drezet, A.: Phys. Rev. A 74, 026301 (2006)

    Article  ADS  Google Scholar 

  13. Cunha, M.O.T., Dunningham, J.A., Vedral, V.: Proc. R. Soc. A 463, 2277 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Gershenfeld, N.A., Chuang, I.L.: Science 275, 350 (1997)

    Article  MathSciNet  Google Scholar 

  15. Gory, D.G., Fahmy, A.F., Havel, T.F.: Proc. Natl Acad. Sci. USA 94, 1634 (1997)

    Article  ADS  Google Scholar 

  16. Jones J.A.: 2000 LANL preprint quant-ph/0009002

  17. Marjanska, M., Chuang, I.L., Kubinec, M.G.: J. Chem. Phys. 112, 5095 (2000)

    Article  ADS  Google Scholar 

  18. Steane, A.: Rep. Prog. Phys. 61, 117 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  19. Kessel, A.R., Ermakov, V.L.: JETP Lett. 70, 61 (1999)

    Article  ADS  Google Scholar 

  20. Kessel, A.R., Ermakov, V.L.: JETP Lett. 71, 443 (2000)

    Google Scholar 

  21. Khitrin, A.K., Fung, B.M.: J. Chem. Phys. 112, 6963 (2000)

    Article  ADS  Google Scholar 

  22. Khitrin, A., Song, H., Fung, B.M.: Phys. Rev. A 63, 020301 (R) (2001)

    Article  ADS  Google Scholar 

  23. Furman, G.B., Goren, S.D., Meerovich, V.M., Sokolovsky, V.L.: J. Phys. Condens. Matter 14, 8715–8723 (2002)

    Article  ADS  Google Scholar 

  24. Furman, G.B., Goren, S.D.: Z. Naturforsch 57a, 315–319 (2002)

    Google Scholar 

  25. Zobov, V.E., Shauro, V.P.: JETP Lett. 86, 230 (2007)

    Article  ADS  Google Scholar 

  26. Bloom, M., Herzog, B., Hahn, E.L.: Phys. Rev. 97, 1699 (1955)

    Article  ADS  Google Scholar 

  27. Das, T.P., Hahn, E.L.: In: Seitz, F., Turnbull, D. (eds.) Solid State Physics, Suppl.I. Academic Press Inc., New York (1957)

    Google Scholar 

  28. Leppermeier, G.W., Hahn, E.L.: Phys. Rev. 142, 179 (1966)

    Article  ADS  Google Scholar 

  29. Mali, M., Brinkmann, D., Pauli, L., Roos, J., Zimmermenn, H.: Phys. Lett. A 124, 112 (1987)

    Article  ADS  Google Scholar 

  30. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  31. Goldman, M.: Adv. Magn. Reson. 14, 59 (1990)

    Google Scholar 

  32. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  33. Popescu, S., Rohrlich, D.: quant-ph/9610044

  34. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Quantum Inf. Process 9, (2010). doi:10.1007/s11128-010-0198-6

  35. Doronin, S.I., Pyrkov, A.N., Fel’dman, E.B.: JETP Lett. 85, 519 (2007)

    Article  Google Scholar 

  36. Fel’dman E.B., Pyrkov, A.N.: JETP Lett. 88, 398 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Furman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furman, G.B., Meerovich, V.M. & Sokolovsky, V.L. Entanglement in nuclear quadrupole resonance. Hyperfine Interact 198, 153–159 (2010). https://doi.org/10.1007/s10751-010-0216-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-010-0216-1

Keywords

Navigation