Skip to main content
Log in

Radium ion: a candidate for measuring atomic parity violation

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Parity Non Conservation (PNC) in atomic systems can be observed in experiments using a single trapped ion and intense laser fields. The original proposal is based on a single barium ion. Here, we study the feasibility for carrying out similar experiment with a single radium ion. Since the PNC effect in atomic system increases faster than the Z 3, where Z is the atomic number, radium is a natural choice. The advantages and disadvantages of measuring atomic parity violation in radium ion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouchiat, M.A., Bouchiat, C.C.: Phys. Lett. B 48, 111 (1974)

    Article  ADS  Google Scholar 

  2. Bouchiat, M.A., Bouchiat, C.C.: Rep. Prog. Phys. 60, 1351 (1997)

    Article  ADS  Google Scholar 

  3. Ginges, J.S.M., Flambaum, V.V.: Phys. Rep. 397, 63 (2004)

    Article  ADS  Google Scholar 

  4. Marciano, W.J., Rosner, J.L.: Phys. Rev. Lett. 65, 2963 (1990)

    Article  ADS  Google Scholar 

  5. Wood, C.S., Bennett, S.C., Cho, D., Masterson, B.P., Roberts, J.L., Tanner, C.E., Wieman, C.E.: Science 275, 1759 (1997)

    Article  Google Scholar 

  6. Bennett, S.C., Wieman, C.E.: Phys. Rev. Lett. 82, 2484 (1999)

    Article  ADS  Google Scholar 

  7. Meekhof, D.M., Vetter, P., Majumder, P.K., Lamoreaux, S.K., Fortson, E.N.: Phys. Rev. Lett. 71, 3442 (1993)

    Article  ADS  Google Scholar 

  8. Vetter, P.A., Meekhof, D.M., Majumder, P.K., Lamoreaux, S.K., Fortson, E.N.: Phys. Rev. Lett. 74, 2658 (1995)

    Article  ADS  Google Scholar 

  9. Macpherson, M.J.D., Zetie, K.P., Warrington, R.B., Stacey, D.N., Hoare, J.P.: Phys. Rev. Lett. 67, 2784 (1991)

    Article  ADS  Google Scholar 

  10. DeMille, D.: Phys. Rev. Lett. 74, 4165 (1995)

    Article  ADS  Google Scholar 

  11. Bouchiat, M.A.: Phys. Rev. Lett. 100, 123003 (2008)

    Article  ADS  Google Scholar 

  12. Fortson, N.: Phys. Rev. Lett. 70, 2383 (1993)

    Article  ADS  Google Scholar 

  13. Koerber, T.W., Schacht, M., Nagourney, W., Fortson, E.N.: J. Phys. B: At. Mol. Opt. Phys. 36, 637 (2003)

    Article  ADS  Google Scholar 

  14. Tsigutkin, K., Dounas-Frazer, D., Family, A., Stalnaker, J.E., Yashchuk, V.V., Budker, D.: Phys. Rev. Lett. 103, 071601 (2009)

    Article  ADS  Google Scholar 

  15. Langacker, P., Luo, M., Mann, A.K.: Rev. Mod. Phys. 64, 87 (1992)

    Article  ADS  Google Scholar 

  16. Majumder, P.K., Tsai, L.L.: Phys. Rev., A 60, 267 (1999)

    Article  ADS  Google Scholar 

  17. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  18. Sherman, J.A., Andalkar, A., Nagourney, W., Fortson, E.N.: Phys. Rev., A 78, 052514 (2008)

    Article  ADS  Google Scholar 

  19. Sherman, J.A., Koerber, T.W., Markhotok, A., Nagourney, W., Fortson, E.N.: Phys. Rev. Lett. 94, 243001 (2005)

    Article  ADS  Google Scholar 

  20. Koerber, T.W., Schacht, M.H., Hendrickson, K.R.G., Nagourney, W., Fortson, E.N.: Phys. Rev. Lett. 88, 143002 (2002)

    Article  ADS  Google Scholar 

  21. Herskind, P.F., Dantan, A., Albert, M., Marler, J.P., Drewsen, M.: J. Phys. B: At. Mol. Opt. Phys. 42, 154008 (2009)

    Article  ADS  Google Scholar 

  22. Sahoo, B.K., Chaudhuri, R., Das, B.P., Mukherjee, D.: Phys. Rev. Lett. 96, 163003 (2006)

    Article  ADS  Google Scholar 

  23. Dzuba, V.A., Flambaum, V.V., Ginges, J.S.M.: Phys. Rev., D 66, 076013 (2002)

    Article  ADS  Google Scholar 

  24. Wansbeek, L.W., Sahoo, B.K., Timmermans, R.G.E., Jungmann, K., Das, B.P., Mukherjee, D.: Phys. Rev., A 78, 050501(R) (2008)

    Article  ADS  Google Scholar 

  25. Koerber, T.W.: Thesis, Doctor of Philosophy, University of Washington (2003)

  26. Fortson, E.N., Pang, Y., Wilets, L.: Phys. Rev. Lett. 65, 2857 (1990)

    Article  ADS  Google Scholar 

  27. Geetha, K.P., Singh, A.D., Das, B.P.: Phys. Rev., A 58, R16 (1998)

    Article  ADS  Google Scholar 

  28. Shidling, P.D., Giri, G.S., van der Hoek, D.J., Jungmann, K., Kruithof, W., Onderwater, C.J.G., Sohani, M., Versolato, O.O., Willmann, L., Wilschut, H.W.: Nucl. Instrum. Methods Phys. Res., A 606, 305 (2009)

    Article  ADS  Google Scholar 

  29. Guest, J.R., Scielzo, N.D., Ahmad, I., Bailey, K., Greene, J.P., Holt, R.J., Lu, Z.T., O’Connor, T.P., Potterveld, D.H.: Phys. Rev. Lett. 98, 093001 (2007)

    Article  ADS  Google Scholar 

  30. Drever, R.W.P., Hall, J.L., Kowalski, F.V., Hough, J., Ford, G.M., Munley, A.J., Ward, H.: Appl. Phys., B 31, 97 (1983)

    Article  ADS  Google Scholar 

  31. Raab, C., Bolle, J., Oberst, H., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Appl. Phys., B 67, 683 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, P., Sen, A. & Mukherjee, M. Radium ion: a candidate for measuring atomic parity violation. Hyperfine Interact 196, 261–267 (2010). https://doi.org/10.1007/s10751-010-0169-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-010-0169-4

Keywords

Navigation