Skip to main content
Log in

Space charge effects on stopped projectile fragment drift in gas

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The results from a particle-in-cell code developed to describe the drifting of ions in an ionized buffer gas are described. The rate of ionization was found to have a dramatic effect on the collection efficiency of the heavy ions and results of the calculations agree well with recent observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Äystö, J.: Development and applications of the IGISOL technique. Nucl. Phys. A 693, 477–494 (2001)

    Article  ADS  Google Scholar 

  2. Savard, G. et al.: Development and operation of gas catchers to thermalize fusion-evaporation and fragmentation products. Nucl. Instrum. Methods Phys. Res. B 204, 582–586 (2003)

    Article  ADS  Google Scholar 

  3. Weissman, L. et al.: Conversion of 92 MeV/u 38Ca/37K projectile fragments into thermalized ion beams ((and the references therein)). Nucl. Instrum. Methods Phys. Res. A 540, 245–258 (and the references therein) (2005)

    Article  ADS  Google Scholar 

  4. Wada, M. et al.: Space-charge effects in the catcher gas cell of a rf ion guide. Rev. Sci. Instrum. 76, 103503 (2005)

    Article  ADS  Google Scholar 

  5. Neumayr, J.B. et al.: The ion-catcher device for SHIPTRAP. Nucl. Instrum. Methods Phys. Res. B 244, 489–500 (2006)

    Article  ADS  Google Scholar 

  6. Bollen, G. et al.: Experiments with thermalized rare isotope beams from projectile fragmentation: a precision mass measurement of the superallowed β emitter 38Ca. Phys. Rev. Lett. 96, 152501-1-4 (2006)

    Article  ADS  Google Scholar 

  7. Morrissey, D.J. et al.: Comissioning the A1900 projectile fragment separator. Nucl. Instrum. Methods Phys. Res. B 204, 90–96 (2003)

    Article  ADS  Google Scholar 

  8. Huyse, M. et al.: Intensity limitations of a gas cell for stopping, storing and guiding radioactive ions. Nucl. Instrum. Methods Phys. Res. B 187, 535–547 (2002)

    Article  ADS  Google Scholar 

  9. Morrissey, D.J.: Extraction of thermalized projectile fragments from gas. Eur. Phys. J. A (in press)

  10. Palestini, S. et al.: Space charge in ionization detectors and the NA48 electromagnetic calorimeter. Nucl. Instrum. Methods Phys. Res. A 421, 75–89 (1999)

    Article  ADS  Google Scholar 

  11. Nasser, E.: Fundamentals of gaseous ionization and plasma electronics. In: Brown, S.C. (ed.). Wiley, New York (1971)

  12. Sauli, F.: Principles of operation of multiwire proportional and drift chers. In: Ferbel, T. (ed.) Experimental Techniques in High-Energy Nuclear and Particle Physics. World Scientific, Singapore (1991)

  13. Mitchell, D.W., Smith, R.D.: Two dimensional many particle simulation of trapped ions. Int. J. Mass Spectrom. Ion Process. 165/166, 271–297 (1997)

    Article  Google Scholar 

  14. Velissaris, C.: A time-dependent solution for the operation of ion chambers in a high-ionization background. Nucl. Instrum. Methods Phys. Res. A 547, 511–516 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Facina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facina, M., Bollen, G. & Morrissey, D.J. Space charge effects on stopped projectile fragment drift in gas. Hyperfine Interact 174, 21–26 (2007). https://doi.org/10.1007/s10751-007-9559-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-007-9559-7

Keywords

PACS

Navigation