Skip to main content
Log in

Structure and Ionic Conductivity of Halocomplexes of Main Group Metallic Elements Studied by NMR and NQR

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Li3InBr6 undergoes phase transition to a lithium superionic conductor at T tr = 314 K (σ = 5.0 × 10−4 S cm−1 at 330 K). The Rietveld analysis and the DSC measurement suggested that the positional disorder is introduced at the cationic sites above T tr. The X-ray powder diffraction pattern at the superionic phase changes gradually with temperature and finally shows a simple powder pattern at 420 K which is quite similar to that of LiBr. This rock salt structure contains intrinsic vacancies because one In3+ and two vacancies substitute for three Li+. 7Li and 115In NMR support the rapid diffusion of the Li+ and the introduction of the In3+ into the rock salt structure. On the other hand, the ionic conductivity for Na3InCl6 was 10−5 S cm−1 even at 500 K. Conduction path for the sodium ions could be proposed by means of the Rietveld analysis and the NMR experiment using a single crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomita, Y., Fujii, A., Ohki, H., Yamada, K. and Okuda, T., Chem. Lett. (1998), 223.

  2. Tomita, Y., Yamada, K., Ohki, H. and Okuda, T., Z. Naturforsch. 53a (1998), 466.

    Google Scholar 

  3. Yamada, K., Iwaki, K., Okuda, T. and Tomita, Y. In: Chowdari, B. V. R., Prabaharan, S. R. S., Yahaya, M. and Talib, I. A. (eds.), Solid State Ionics: Trends in the New Millennium, World Scientific, Singapore, 2002, pp. 621–628.

  4. Bohnsack, A., Stenzel, F., Zajonc, A., Balzer, G., Wickleder, M. S. and Meyer, G., Z. Anorg. Allg. Chem. 623 (1997), 1067.

    Article  Google Scholar 

  5. Bohnsack, A., Balzer, G., Wickleder, M. S., Güdel, H.-U. and Meyer, G., Z. Anorg. Allg. Chem. 623 (1997), 1352.

    Article  Google Scholar 

  6. Menetrier, M., Hojjaji, A., Estournes, C. and Levasseur, A., Solid State Ionics 48 (1991), 325.

    Article  Google Scholar 

  7. Izumi, F. and Ikeda, T., Mat. Sci. Forum 321–324 (2000), 198.

    Article  Google Scholar 

  8. Schmidt, M. O., Wickleder, M. S. and Meyer, G., Z. Anorg. Allg. Chem. 625 (1999), 539.

    Article  Google Scholar 

  9. Yamada, K., Mohara, H., Kubo, T., Imanaka, T., Iwaki, K., Ohki, H. and Okuda, T., Z. Naturforsch. 57a (2002), 375–380.

    Google Scholar 

  10. Abragam, A., Principles of Nuclear Magnetism, Chap. VII, Oxford University Press, London, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okuda, T., Yamada, K. Structure and Ionic Conductivity of Halocomplexes of Main Group Metallic Elements Studied by NMR and NQR. Hyperfine Interact 159, 95–102 (2004). https://doi.org/10.1007/s10751-005-9198-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-005-9198-9

Key Words

Navigation