Skip to main content

Advertisement

Log in

Systematic mapping of phytoplankton literature about global climate change: revealing temporal trends in research

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In aquatic ecosystems, phytoplankton is an important component of biodiversity. Although much is already known about the main climate change agents impacting phytoplankton, it is necessary to systematize this knowledge in order to identify the main trends, gaps, and perspectives for future research in this field. Thus, we conducted a systematic review of the global scientific literature on phytoplankton and climate change. We found 660 articles published between 1991 and 2020 using the Web of Science platform. The studies were mostly conducted in marine and freshwater environments using an observational approach. The main variables studied were temperature and nutrient concentrations. The main phytoplankton response variables are linked to metrics of species composition/diversity or physiological/biochemical traits of organisms. We found that over the last 30 years, a large number of climatic predictors and phytoplankton response variables have been studied. However, the number of studies evaluating interactions of multiple variables (climate and phytoplankton response) is small in comparison to the total amount of research. Thus, the combination of methodological approaches, as well as the simultaneous study of multiple climate predictors and response variables, can help in the production of new information to understanding of the effects of climate change on phytoplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request.

References

  • Abt, H. A., 2007. The publication rate of scientific papers depends only on the number of scientists. Scientometrics 73: 281–288.

    Article  CAS  Google Scholar 

  • Bastidas Navarro, M. A. & B. E. Modenutti, 2012. Precipitation patterns, dissolved organic matter and changes in the plankton assemblage in Lake Escondido (Patagonia, Argentina). Hydrobiologia 691: 189–202.

  • Basu, S. & K. R. M. Mackey, 2018. Phytoplankton as key mediators of the biological carbon pump: their responses to a changing climate. Sustainability 10: 869.

    Article  Google Scholar 

  • Bautista-chamizo, E., M. Sendra, M. R. De Orte & I. Riba, 2019. Comparative effects of seawater acidification on microalgae: single and multispecies toxicity tests. Science of the Total Environment 649: 224–232.

    Article  CAS  Google Scholar 

  • Beardall, J., S. Stojkovic & S. Larsen, 2009. Living in a high CO2 world: impacts of global climate change on marine phytoplankton. Plant Ecology & Diversity 2: 191–205.

    Article  Google Scholar 

  • Bellinger, E. G. & D. C. Sigee, 2010. Freshwater Algae: Identification and use as Bioindicators, Wiley Blackwell, Chichester.

    Book  Google Scholar 

  • Bi, R., S. M. H. Ismar-Rebitz, U. Sommer, H. Zhang & M. Zhao, 2020. Ocean-related global change alters lipid biomarker production in common marine phytoplankton. Biogeoscience 17: 6287–6307.

    Article  CAS  Google Scholar 

  • Bloesch, C. H., 1988. Mesocosm studies. Hydrobiologia 159: 221–222.

    Article  Google Scholar 

  • Bogard, M., R. J. Vogt, N. M. Hayes & P. R. Leavitt, 2020. Unabated nitrogen pollution favors growth of toxic Cyanobacteria over Chlorophytes in most hypereutrophic lakes. Environmental Science and Technology 54: 3219–3227.

    Article  CAS  Google Scholar 

  • Borevitz, J., 2021. Utilizing genomis to understand and respond to global climate change. Genome Biology 22: 91.

    Article  Google Scholar 

  • Bouraï, L., M. Logez, C. Laplace-Treyture & C. Argillier, 2020. How do eutrophication and temperature interact to shape the community structures of phytoplankton and fish in lakes? Water 12: 779.

    Article  Google Scholar 

  • Brander, K. & T. Kiørboe, 2020. Decreasing phytoplankton size adversely affects ocean food chains. Global Change Biology 23: 5356–5357.

    Article  Google Scholar 

  • Burgmer, T. & H. Hillebrand, 2011. Temperature mean and variance alter phytoplankton biomass and biodiversity in a long-term microcosm experiment. Oikos 120: 922–933.

    Article  Google Scholar 

  • Carneiro, F. M., J. C. Nabout & L. M. Bini, 2008. Trends in the scientific literature on phytoplankton. Limnology 9: 153–158.

    Article  Google Scholar 

  • Chust, G., J. I. Allen, C. Schurum, J. Holt, K. Tsiaras, M. Zavatarelli, M. Chifflet, I. Dadou, U. Daewel, S. L. Wakelin, E. Machu, D. Pushpadas, M. Butenschon, Y. Artioli, G. Petihakis, C. Smith, V. Garçon, K. Goubanova, B. Le Vu, B. A. Fach, B. Salihoglu, E. Clementi & X. Irigoien, 2014. Biomass changes and trophic amplification of plankton in a warmer ocean. Global Change Biology 20: 2124–2139.

    Article  Google Scholar 

  • Coelho, F. J. R. C., A. L. Santos, J. Coimbra, A. Almeida, A. Cunha, D. F. R. Cleary, R. Calado & N. C. M. Gomes, 2013. Interactive effects of global climate change and pollution on marine microbes: the way ahead. Ecology and Evolution 3: 1808–1818.

    Article  Google Scholar 

  • Diedenhofen, B. & J. Musch, 2015. cocor: A comprehensive solution for the statistical comparison of correlations. PLoS ONE 10(4): e0121945. https://doi.org/10.1371/journal.pone.0121945.

    Article  CAS  Google Scholar 

  • Dudgeon, D., 2019. Multiple threats imperil freshwater biodiversity in the Anthropocene. Current Biology 29: R992–R995.

    Article  Google Scholar 

  • El-Sheekh, M. M., E. A. Alwaleed, A. Ibrahim & H. Saber, 2021. Detrimental effect of UV-B radiation on growth, photosynthetic pigments, metabolites and ultrastructure of some cyanobacteria and freshwater chlorophyta. International Journal of Radiation Biology 97: 265–275.

    Article  CAS  Google Scholar 

  • Fellows, I., 2018. wordcloud: Word Clouds. R Package Version 2.6. https://CRAN.R-project.org/package=wordcloud.

  • Field, C. B., M. J. Behrenfeld, J. T. Randerson & P. Falkowski, 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240.

    Article  CAS  Google Scholar 

  • Filiz, N., U. Iskin, M. B. Beklioglu, B. Öglü, Y. Cao, T. A. Davidson, M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2020. Phytoplankton community response to nutrients, temperatures, and heat wave in shallow lakes: an experimental approach. Water 12: 3394.

    Article  CAS  Google Scholar 

  • Forsman, A., H. Berggren, M. Aströn & P. Larsson, 2016. To what extend can existing research help project climate change impacts on biodiversity aquatic environments? A review of methodological approaches. Journal of Marine Science and Engineering 4: 75.

    Article  Google Scholar 

  • Grizzetti, B., D. Lanzanova, C. Liquete, A. Reynaud & A. C. Cardoso, 2016. Assessing water ecosystem services for water resource management. Environmental Science & Policy 61: 194–203.

    Article  Google Scholar 

  • Häder, D. P., K. Gao & K., 2017. The impacts of climate change on marine phytoplankton. In Phillips, B. F. & M. Pérez-Ramírez (eds), Climate Change Impacts on Fisheries and Aquaculture Wiley-Blackwell, Chichester: 897–924. https://doi.org/10.1002/9781119154051.ch27.

    Chapter  Google Scholar 

  • Häder, D. P., C. E. Williamson, S. A. Wängberg, M. Rautio, K. C. Rose, K. Gao, E. W. Helbling, R. P. Sinha & R. Worrest, 2015. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochemical and Photobiology Science 14: 108–126.

    Article  Google Scholar 

  • Halbritter, A. H., H. J. De Boeck, A. E. Eycott, S. Reinsch, D. A. Robinson, S. Vicca, B. Berauer, C. T. Christiansen, M. Estiarte, J. M. Grünzweig, R. Gya, K. Hansen, A. Jentsch, H. Lee, S. Linder, J. Marshall, J. Peñuelas, I. K. Schmidt, Stuart-Haëntjens, the ClimMani Working Group & V. Vandvik, 2020. The handbook for standardize field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Trends in Ecology & Evolution 11: 22–37.

    Google Scholar 

  • Harley, C. D. G., A. R. Hughes, K. M. Hultgren, B. G. Miner, C. J. B. Sorte, C. S. Thornber, L. F. Rodriguez & L. Toman, 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9: 228–241.

    Article  Google Scholar 

  • He, G. & B. R. Silliman, 2019. Climate change, human impacts, and coastal ecosystems in the anthropocene. Current Biology 29: R1021–R1035.

    Article  CAS  Google Scholar 

  • Hennon, G. M. M. & S. T. Dyhrman, 2020. Progress and promise of omics for predictin the impacts of climate change on harmful algal blooms. Harmful Algal 9: 101587.

    Article  Google Scholar 

  • Henson, S. A., B. B. Cael, S. R. Allen & S. Dutkiewicz, 2021. Future phytoplankton diversity in a changing climate. Nature Communication 12: 5372.

    Article  CAS  Google Scholar 

  • Hernando, M., D. E. Varela, G. Malanga, G. O. Almandoz & I. R. Schloss, 2020. Effects of climate-induced changes in temperature and salinity on phytoplankton physiology and stress responses in coastal Antarctica. Journal of Experimental Marine Biology and Ecology 530–531: 151400.

    Article  Google Scholar 

  • Hervé, M., 2021. RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R package version 0.9-80. https://cran.r-project.org/web/packages/RVAideMemoire. Accessed 15 October 2021.

  • Hinners, J., I. Hense & A. Kremp, 2019. Modelling phytoplankton adaptation to global warming based on resurrection experiments. Ecological Modeling 400: 27–33.

    Article  Google Scholar 

  • Huertas, E., M. Rouco, V. López-Rodas & E. Costas, 2011. Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proceedings of the Royal Society B Biological Science 278: 3534–3543.

    Article  Google Scholar 

  • Huisman, J., G. A. Cood, H. W. Paerl, B. W. Ibelings, J. M. H. Verspagen & P. M. Visser, 2018. Cyanobacterial blooms. Nature Reviews Microbiology 16: 471–483.

    Article  CAS  Google Scholar 

  • IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

  • Irfan, S. & A. M. M. Alatawi, 2019. Aquatic Ecosystem and Biodiversity: A Review. Open Journal of Ecology 9: 1–13.

    Article  CAS  Google Scholar 

  • Jakhar, P., 2013. Role of phytoplankton and zooplankton as health indicators of aquatic ecosystem: a review. International Journal of Innovate Research & Studies 2: 490–500.

    Google Scholar 

  • Jeppesen, E., B. Moss, H. Bennion, L. Carvalho, L. DeMeester, H. Feuchtmayr, N. Friberg, M. O. Gessner, M. Hefting, T. L. Lauridsen, L. Liboriussen, H. J. Malmquist, L. May, M. Meerhoff, J. S. Olafsson, M. B. Soons, J. T. A. & J. T. A. Verhoeven, 2010. Interaction of climate change and eutrophication. In Kernan, M., R. W. Battarbee & B. Moss (eds), Climate Change Impacts on Freshwater Ecosystems. Blackwell Publishing, Hoboken.

  • Jeppesen, E., M. Meerhoff, T. A. Davidson, D. Trolle, M. Søndergaard, T. L. Lauridsen, M. Beklioglu, S. Brucet, P. Volta, I. González-Bergonzoni & A. Nielsen, 2014. Climate change impacts on lakes: an integrate ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology 73: 84–107.

    Article  Google Scholar 

  • Katayama, T., R. Makabe, M. Sampei, H. Hattori, H. Sasaki & S. Taguchi, 2017. Photoprotection and recovery of photosystem II in the Southern Ocean phytoplankton. Polar Science 12: 5–11.

    Article  Google Scholar 

  • Kennish, M. J., 2021. Drivers of change in estuarine and coastal marine environments: an overview. Open Journal of Ecology 11: 224–239.

    Article  Google Scholar 

  • Koehn, J. D., A. J. Hobday, M. S. Pratchett & B. M. Gillandres, 2011. Climate change and Australian marine and freshwater environments, fishes and fisheries: synthesis and options for adaptation. Marine and Freshwater Research 62: 1148–1164.

    Article  Google Scholar 

  • Kratina, P., H. S. Greig, P. L. Thompson, T. S. A. Carvalho- Pereira & J. B. Shurin, 2012. Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology 93: 1421–1430.

    Article  Google Scholar 

  • Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution and Systematics 39: 615–639.

    Article  Google Scholar 

  • Litchman, E., K. F. Edwards, C. A. Klausmeier & M. K. Thomas, 2012. Phytoplankton niches, traits and ecoevolutionary responses to global environmental change. Marine Ecology Progress Series 470: 235–248.

    Article  Google Scholar 

  • Low-Décarie, E., M. D. Jewell, G. F. Fussmann & G. Bell, 2013. Long-term culture at elevated atmospheric CO2 fails to evoke specific adaptation in seven freshwater phytoplankton species. Proceedings of the Royal Society B Biological Science. https://doi.org/10.1098/rspb.2012.2598.

    Article  Google Scholar 

  • Lürling, M., F. van Oosterhout & E. Faassen, 2017. Eutrophication and warming boost Cyanobacterial biomass and microcystins. Toxins 9: 64.

    Article  Google Scholar 

  • Machado, K. B., L. C. G. Vieira & J. C. Nabout, 2019. Predicting the dynamics of taxonomic and functional phytoplankton compositions in different global warming scenarios. Hydrobiologia 830: 115–134.

    Article  CAS  Google Scholar 

  • Margalef, R., 1978. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–504.

    Google Scholar 

  • Martono, M., 2016. Effect of global warming on chlorophyll-a concentrations in the Indonesian waters. Makara Journal of Science 20: 33–39.

    Article  CAS  Google Scholar 

  • Moss, B., D. Mckee, D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heys & D. Wilson, 2003. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. Journal of Applied Ecology 40: 782–792.

    Article  Google Scholar 

  • Mouw, C. B., A. Barnett, G. A. McKinley, L. Gloege & D. Pilcher, 2016. Phytoplankton size impact on export flux in the global ocean. Global Biogeochemical Cycles 30: 1542–1562.

    Article  CAS  Google Scholar 

  • Nabout, J. C., F. M. Carneiro, P. P. Borges, K. B. Machado & V. L. M. Huszar, 2015. Brazilian scientific production on phytoplankton studies: national determinants and international comparisons. Brazilian Journal of Biology 75: 216–223.

    Article  CAS  Google Scholar 

  • Nakagawa, S., G. Samarasinghe, N. R. Haddaway, M. J. Westgate, R. E. O´Dea, D. W. A. Noble & M. Lagisz, 2019. Research weaving: visualizing the future of research synthesis. Trends in Ecology and Evolution 34: 224–238.

  • Nazari-Sharabian, M., S. Ahmad & M. Karakouzian, 2018. Climate change and eutrophication: A short review. Engineering Technology & Applied Science Research 8: 3668–3672.

    Article  Google Scholar 

  • Nogueira, P., R. B. Domingues & A. B. Barbosa, 2014. Are microcosm volume and sample pre-filtration relevant to evaluate phytoplankton growth? Journal of Experimental Marine Biology and Ecology 461: 323–330.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2020. Vegan: Community Ecology Package. R Package Version 4.0. http://CRAN.R-project.org/package=vegan.

  • Oleksy, I. A., W. S. Beck, R. W. Lammers, C. E. Steger, C. Wilson, K. Christianson, K. Vincent, G. Johnson, P. T. J. Johnson & J. S. Baron, 2020. The role of warm, dry summers and variation in snowpack on phytoplankton dynamics in mountain lakes. Ecology 11: e03132. https://doi.org/10.1002/ecy.3132.

    Article  Google Scholar 

  • Paerl, H. W. & T. G. Otten, 2013. Harmful Cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology 65: 995–1010.

    Article  CAS  Google Scholar 

  • Paerl, H. W. & V. J. Paul, 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Research 46: 1349–1363.

    Article  CAS  Google Scholar 

  • Pinkerton, M. H., P. W. Boyd, S. Deppeler, A. Hayward, J. Höfer & S. Moreau, 2021. Evidence for the impact of climate change on primary producers in the Southern Ocean. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2021.592027.

    Article  Google Scholar 

  • Pittock, J., L. J. Hansen & R. Abell, 2008. Running dry: Freshwater biodiversity, protected areas and climate change. Biodiversity 9: 30–38.

    Article  Google Scholar 

  • Poff, N. L., M. M. Brinson & J. W. Day, 2002. Aquatic ecosystems and global climate change. Technical Report, Pew Center on Global Climate Change, Arlington.

  • Ptacnik, R., L. Lepistõ, E. Willén, P. Brettum, T. Andersen, S. Rekolainen, A. L. Solheim & L. Carvalho, 2008. Quantitative responses of lake phytoplankton to eutrophication in Northern Europe. Aquatic Ecology 42: 227–236.

    Article  CAS  Google Scholar 

  • R Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.

  • Rasconi, S., K. Winter & M. J. Kainz, 2017. Temperature increase and fluctuation induce phytoplankton biodiversity loss – Evidence from a multi-seasonal mesocosm experiment. Ecology and Evolution 7: 2936–2946.

    Article  Google Scholar 

  • Rastogi, R. P., D. Madamwar & A. Incharoensakdi, 2015. Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Frontiers in Microbiology 6: 1254.

    Article  Google Scholar 

  • Raven, J. A., C. S. Gobler & P. J. Hansen, 2019. Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: theoretical and observed effects on harmful algal blooms. Harmful Algae. https://doi.org/10.1016/j.hal.2019.03.012.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton, Cambridge University Press, Cambridge:

    Book  Google Scholar 

  • Salmaso, N. & M. Tolotti, 2021. Phytoplankton and anthropogenic changes in pelagic environments. Hydrobiologia 848: 251–284.

    Article  CAS  Google Scholar 

  • Sangam, S. L. & K. S. Savitha, 2019. Climate change and global warming: a scientometric study. Collnet Journal of Scientometrics and Information Management 13: 199–212.

    Article  Google Scholar 

  • Schulhof, M. A., J. B. Shurin, S. A. Declerk & D. B. Van de Waal, 2019. Phytoplankton growth and stoichiometric responses to warming, nutrient addition and grazing depend on lake productivity and cell size. Global Change Biology 25: 2751–2762.

    Article  Google Scholar 

  • Shaffer, T. L. & D. H. Johnson, 2008. Ways of learning: observational studies versus experiments. Journal of Wildlife Management 72: 4–13.

    Article  Google Scholar 

  • Slim, K., A. Fadel, A. Atoui, B. J. Lemaire, B. Vinçon-Leite & B. Tassin, 2013. Global warming as a driver factor for cyanobacterial blooms in lake Karaoun, Lebanon. Desalination and Water Treatment 52: 2094–2101.

    Article  Google Scholar 

  • Spikay, C. S., K. T. Kiss, C. S. Vadadi-Fülöp & L. Hufnagel, 2009. Trends in research on the possible effects of climate change concerning aquatic ecosystems with special emphasis on the modeling approach. Applied Ecology and Environmental Research 7: 171–198.

    Article  Google Scholar 

  • Sugie, K., A. Fujiwara, S. Nishino, S. Kameyama & N. Harada, 2020. Impacts of temperature, CO2, salinity on phytoplankton community composition in the western Arctic Ocean. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2019.00821.

    Article  Google Scholar 

  • Thomas, K. M., C. T. Kremer & E. Litchman, 2016. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Global Ecology and Biogeography 25: 75–86.

    Article  Google Scholar 

  • Trindade, R. M. L., A. K. N. Ribeiro, J. C. Nabout & J. C. Bortolini, 2021 The global scientific literature on applications and trends in the use of functional morphological groups in phytoplankton studies. Acta Limnologica Brasiliensia 33: e12. https://doi.org/10.1590/S2179-975X7220.

  • Velthuis, M., L. N. de Senerpont Domis, T. Frenken, S. Stephan, G. Kazanjian, R. Aben, S. Hilt, S. Kosten, E. van Dook & D. B. Van de Waal, 2017. Warming advances top-down control and reduces producer biomass in a freshwater plankton community. Ecosphere 8: e01651.

    Article  Google Scholar 

  • Winder, M. & U. Sommer, 2012. Phytoplankton responses to a changing climate. Hydrobiologia 698: 5–16.

    Article  Google Scholar 

  • Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society Biological Science 365: 2093–2106.

    Article  Google Scholar 

  • Wrona, F. J., T. D. Prowse, J. D. Reist, J. E. Hobbie, L. M. J. Lévesque & W. F. Vincent, 2006. Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35: 359–369.

    Article  CAS  Google Scholar 

  • Yuan, Z. Y., F. Jiao, X. R. Shi, J. Sardans, F. T. Maestre, M. Delgado-Baquerizo, P. B. Reich & J. Peñuelas, 2017. Experimental and observational studies find contrasting responses of soil nutrients to climate change. eLife 6: e23255.

  • Yvon-Durocher, G., A. P. Allen, M. Cellamare, M. Dossena, K. J. Gaston, M. Leitão, J. M. Montoya, D. C. Reuman, G. Woodward & M. Trimmer, 2015. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biology 13: e1002324.

    Article  Google Scholar 

  • Yvon-Durocher, G., C. E. Schaum & M. Trimmer, 2017. The temperature dependence of phytoplankton stoichiometry: investigating the roles of species sorting and local adaptation. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2017.02003.

    Article  Google Scholar 

  • Zhang, Y., K. Li, Q. Zhou, L. Chen, X. Yang & H. Zhang, 2021. Phytoplankton responses to solar UVR and its combination with nutrient enrichment in a plateau oligotrophic Lake Fuxian: a mesocosm experiment. Environmental Science and Pollution Research 28: 29931–29944.

    Article  CAS  Google Scholar 

Download references

Funding

This study was developed in the context of National Institute for Science and Technology in Ecology, Evolution and Biodiversity Conservation, supported by Ministério da Ciência, Tecnologia e Inovação/ Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCTIC/CNPq) [Grant Number 465610/2014-5], Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG) and and Brazilian Network on Global Climate Change Research (Rede CLIMA). KBM thanks the CNPq and FAPEG for DTI-B research grant (2019–2021) and postdoctoral fellowship (2021-actual), respectively. ATA and MFA received scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - code 001). JCN received productivity Grant from CNPq (Grant Number 305798/2019-7).

Author information

Authors and Affiliations

Authors

Contributions

KBM and JCN performed the study conception. KBM, ATA, MFA contributed to articles reading and the data collecting. KBM conducted the data analysis. All authors contributed for drafting of manuscript and revised their final version.

Corresponding author

Correspondence to Karine Borges Machado.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Handling editor: Alex Elliott

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 824 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, K.B., Andrade, A.T., Almeida, M.F. et al. Systematic mapping of phytoplankton literature about global climate change: revealing temporal trends in research. Hydrobiologia 850, 167–182 (2023). https://doi.org/10.1007/s10750-022-05052-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05052-y

Keywords

Navigation