Skip to main content

Advertisement

Log in

Processes contributing to rotifer community assembly in shallow temporary aridland waters

  • ECOLOGY OF SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Understanding how local conditions and dispersal dynamics structure communities of passively dispersing aquatic invertebrates remains uncertain, especially in aridland systems. In these systems, dispersal is irregular and successful colonization is subject to priority effects. To investigate these factors, we compared rotifer species composition from Chihuahuan Desert rock pools, playas, and tanks. (1) We found 132 species with high beta-dissimilarity among sites (> 0.8). (2) Correlation between species richness and habitat area was significant, but weak, for all sites. (3) Dissimilarity analyses, supported by negative Dispersal-Niche Continuum Index (DNCI) values, showed that stochastic processes dominate community assembly. (4) We examined influence of three important environmental variables on richness and community structure: hydroperiod, algal mat and macrophyte development, and conductivity; we also examined how rotifer trophi type (a functional trait) affected DNCI and identified indicator species. Hydroperiod was important for playas and tanks, but not rock pools. Conductivity had a strong influence. Richness was greatest in habitats with highest amounts of vegetation. Environmental factors explained ~12% of variation in community composition, indicating that while deterministic processes are significant, stochastic processes dominate in these systems. We provide a conceptual model that highlights the distinctive of nature aquatic communities in aridlands compared to temperate regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baselga, A., 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21: 1223–1232.

    Article  Google Scholar 

  • Bégin, P. N. & W. F. Vincent, 2017. Permafrost thaw lakes and ponds as habitats for abundant rotifer populations. Arctic Science 3: 354–377.

    Article  Google Scholar 

  • Brown, B. L., E. R. Sokol, J. Skelton & B. Tornwall, 2017. Making sense of metacommunities: dispelling the mythology of a metacommunity typology. Oecologia 183: 643–652.

    Article  PubMed  Google Scholar 

  • Bivand, R. S. & D. W. S. Wong, 2018. Comparing implementations of global and local indicators of spatial association. Test 27(3): 716–748.

    Article  Google Scholar 

  • Brown, B. L. & C. M. Swan, 2010. Dendritic network structure constrains metacommunity properties in riverine ecosystems. Journal of Animal Ecology 79: 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Brown, P. D., T. Schröder, J. V. Ríos-Arana, R. Rico-Martinez, M. Silva-Briano, R. L. Wallace & E. J. Walsh, 2020. Patterns of rotifer diversity in the Chihuahuan desert. Diversity 12: 393.

    Article  Google Scholar 

  • Castro, B. B., S. C. Antunes, R. Pereira, A. M. V. M. Soares & F. Goncalves, 2005. Rotifer community structure in three shallow lakes: seasonal fluctuations and explanatory factors. Hydrobiologia 543: 221–232.

    Article  Google Scholar 

  • Chaparro, G., Z. Horváth, I. O’farrell, R. Ptacnik & T. Hein, 2018. Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions. Freshwater Biology 63: 380–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase, J. M., 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328: 1388–1391.

    Article  CAS  PubMed  Google Scholar 

  • De Meester, L., S. Declerck, R. Stoks, G. Louette, F. Van De Meutter, T. De Bie, E. Michels & L. Brendonck, 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 715–725.

    Article  Google Scholar 

  • De Meester, L., A. Gómez, B. Okamura & K. Schwenk, 2002. The Monopolization Hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecologia 23: 121–125.

    Article  Google Scholar 

  • De Meester, L., J. Vanoverbeke, L. J. Kilsdonk & M. C. Urban, 2016. Evolving perspectives on monopolization and priority effects. Trends in Ecology & Evolution 31: 136–146.

    Article  Google Scholar 

  • de Morais, C. S., L. P. Diniz, F. D. R. Sousa, T. Gonçalves-Souza, L. M. A. Elmoor-Loureiro & M. de Melo Júnior, 2019. Bird feet morphology drives the dispersal of rotifers and microcrustaceans in a Neotropical temporary pond. Aquatic Sciences 81: 1–9.

    Google Scholar 

  • De Smet, W. H. & L. Beyens, 1995. Rotifers from the Canadian High Arctic (Devon Island, Northwest Territories). Hydrobiologia 313(314): 29–34.

    Article  Google Scholar 

  • Dinerstein, E., D. Olson, J. Atchley, C. Loucks, S. Contreras-Balderas, R. Abell, E. Iñigo, E. Enkerlin, C. Williams & G. Castilleja, 2001. Ecoregion-Based Conservation in the Chihuahuan Desert: A Biological Assessment, Nature Conservancy Report, Arlington, VA:

    Google Scholar 

  • Dodson, S. I., S. E. Arnott & K. L. Cottingham, 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662–2679.

    Article  Google Scholar 

  • Dray, S., D. Bauman, G. Blanchet, D. Borcard, S. Clappe, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi & H. H. Wagner 2021. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3–14. https://CRAN.R-project.org/package=adespatial

  • Echaniz, S. A., G. C. Cabrera, C. Rodríguez & A. M. Vignatti, 2013. Do temporary lakes vary from year to year? A comparison of limnological parameters and zooplankton from two consecutive annual cycles in an Argentine temporary saline lake. International Journal of Aquatic Science 4: 44–61.

    Google Scholar 

  • Fontaneto, D., T. G. Barraclough, K. Chen, C. Ricci & E. A. Herniou, 2008a. Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Molecular Ecology 17: 3136–3146.

    Article  CAS  PubMed  Google Scholar 

  • Fontaneto, D., W. H. De Smet & G. Melone, 2008b. Identification key to the genera of marine rotifers worldwide. Meiofauna Marina 16: 1–200.

    Google Scholar 

  • Fukami, T., 2015. Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics 46: 1–23.

    Article  Google Scholar 

  • Gansfort, B., D. Fontaneto & M. Zhai, 2020. Meiofauna as a model to test paradigms of ecological metacommunity theory. Hydrobiologia 847: 2645–2663.

    Article  Google Scholar 

  • García-Girón, J., J. Heino, F. García-Criado, C. Fernández-Aláez & J. Alahuhta, 2020. Biotic interactions hold the key to understanding metacommunity organization. Ecography 43: 1180–1190.

    Article  Google Scholar 

  • García-Roger, E. M., M. J. Carmona & M. Serra, 2006. Hatching and viability of rotifer diapausing eggs collected from pond sediments. Freshwater Biology 51: 1351–1358.

    Article  Google Scholar 

  • Gibert, C., G. Escarguel, A. Vilmi & J. Wang, 2020. DNCImper: assembly process identification based on SIMPER analysis.–R package ver. 0.0. 1.0000.

  • Gooriah, L. D. & J. M. Chase, 2019. Sampling effects drive the species–area relationship in lake zooplankton. Oikos 129: 124–132.

    Article  Google Scholar 

  • Gooriah, L., S. A. Blowes, A. Sagouis, J. Schrader, D. N. Karger, H. Kreft & J. M. Chase, 2021. Synthesis reveals that island species–area relationships emerge from processes beyond passive sampling. Global Ecology and Biogeography 30: 2119–2131.

    Article  Google Scholar 

  • Goździejewska, A. M., J. Koszałka, R. Tandyrak, J. Grochowska & K. Parszuto, 2021. Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes. Hydrobiologia 848: 2699–2719.

    Article  CAS  Google Scholar 

  • Grainger, T. N. & B. Gilbert, 2016. Dispersal and diversity in experimental metacommunities: linking theory and practice. Oikos 125: 1213–1223.

    Article  Google Scholar 

  • Green, J., 1986. Associations of zooplankton in six crater lakes in Arizona, Mexico and New Mexico. Journal of Zoology 208: 135–159.

    Article  Google Scholar 

  • Jocque, M., B. Vanschoenwinkel & L. U. C. Brendonck, 2010. Freshwater rock pools: a review of habitat characteristics, faunal diversity and conservation value. Freshwater Biology 55: 1587–1602.

    Google Scholar 

  • Juračka, P. J., J. Dobiáš, D. S. Boukal, M. Šorf, L. Beran, M. Černý & A. Petrusek, 2019. Spatial context strongly affects community composition of both passively and actively dispersing pool invertebrates in a highly heterogeneous landscape. Freshwater Biology 64: 2093–2106.

    Article  Google Scholar 

  • Karpowicz, M. & J. Ejsmont-Karabin, 2021. Diversity and structure of pelagic zooplankton (Crustacea, Rotifera) in NE Poland. Water 13: 456.

    Article  Google Scholar 

  • Kaya, M., D. Fontaneto, H. Segers & A. Altindağ, 2010. Temperature and salinity as interacting drivers of species richness of planktonic rotifers in Turkish continental waters. Journal of Limnology 69: 297–304.

    Article  Google Scholar 

  • Kneitel, J. M., 2014. Inundation timing, more than duration, affects the community structure of California vernal pool mesocosms. Hydrobiologia 732: 71–83.

    Article  CAS  Google Scholar 

  • Kobayashi, T., T. J. Ralph, D. S. Ryder, S. J. Hunter, R. J. Shiel & H. Segers, 2015. Spatial dissimilarities in plankton structure and function during flood pulses in a semi-arid floodplain wetland system. Hydrobiologia 747: 19–31.

    Article  CAS  Google Scholar 

  • Kordbacheh, A., G. Garbalena & E. J. Walsh, 2017. Population structure and cryptic species in the cosmopolitan rotifer Euchlanis dilatata. Zoological Journal of the Linnean Society 181: 757–777.

    Article  Google Scholar 

  • Kulkarni, M. R., S. M. Padhye, R. B. Rathod, Y. S. Shinde & K. Pai, 2019. Hydroperiod and species-sorting influence metacommunity composition of crustaceans in temporary rock pools in India. Inland Waters 9: 320–333.

    Article  CAS  Google Scholar 

  • Langley, J. M., R. J. Shiel, D. L. Nielsen & J. D. Green, 2001. Hatching from the sediment egg-bank, or aerial dispersing?—the use of mesocosms in assessing rotifer biodiversity. Hydrobiologia 446(447): 203–211.

    Article  Google Scholar 

  • Lopes, P. M., L. M. Bini, S. A. Declerck, V. F. Farjalla, L. C. Vieira, C. C. Bonecker, F. A. Lansac-Toha, F. A. Esteves & R. L. Bozelli, 2014. Correlates of zooplankton beta diversity in tropical lake systems. PLoS ONE 9: e109581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo, Y. H. & H. Segers, 2020. Eight new Lepadellidae (Rotifera, Monogononta) from the Congo bring to level endemism in Africa’s rotifers. Zootaxa 47: 31.

    Google Scholar 

  • Matthews, T., K. Triantis, R. Whittaker & F. Guilhaumon, 2019. sars: an R package for fitting, evaluating and comparing species–area relationship models. Ecography 42: 1446–1455.

    Article  Google Scholar 

  • Mazvelos, N., J. Toja & C. Guisande, 1993. Rotifers in ephemeral ponds of Doñana National Park. Hydrobiologia 255(256): 429–434.

    Article  Google Scholar 

  • McLean, K. I., D. M. Mushet, J. N. Sweetman, M. J. Anteau & M. T. Wiltermuth, 2020. Invertebrate communities of prairie-pothole wetlands in the age of the aquatic Homogenocene. Hydrobiologia 847: 3773–3793.

    Article  Google Scholar 

  • Medeiros, L. P., K. Boege, E. Del-Val, A. Zaldívar-Riverón & S. Saavedra, 2021. Observed ecological communities are formed by species combinations that are among the most likely to persist under changing environments. The American Naturalist 197: E17–E29.

    Article  PubMed  Google Scholar 

  • Meyer-Milne, E., L. Brendonck & T. Pinceel, 2021. Egg morphology may underpin the successful distribution of large branchiopods in temporary waters. Aquatic Ecology 55: 237–251.

    Article  Google Scholar 

  • Mills, S., J. A. Alcántara-Rodríguez, J. Ciros-Pérez, A. Gómez, A. Hagiwara, K. H. Galindo, C. D. Jersabek, R. Malekzadeh-Viayeh, F. Leasi, J.-S. Lee, D. B. Mark Welch, S. Papakostas, S. Riss, H. Segers, M. Serra, R. Shiel, R. Smolak, T. W. Snell, C.-P. Stelzer, C. Q. Tang, R. L. Wallace, D. Fontaneto & E. J. Walsh, 2017. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796: 39–58.

    Article  CAS  Google Scholar 

  • Montero-Pau, J., E. Ramos-Rodríguez, M. Serra & A. Gómez, 2011. Long-term coexistence of rotifer cryptic species. PLoS ONE 6: e21530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno, E., C. Pérez-Martínez & J. M. Conde-Porcuna, 2019. Dispersal of rotifers and cladocerans by waterbirds: seasonal changes and hatching success. Hydrobiologia 834: 145–162.

    Article  Google Scholar 

  • Nandini, S., F. Peña-Aguado, U. Arreguin Rebolledo, S. S. S. Sarma & G. Murugan, 2019. Molecular identity and demographic responses to salinity of a freshwater strain of Brachionus plicatilis from the shallow Lake Pátzcuaro, Mexico. Fundamental and Applied Limnology 192: 319–329.

    Article  Google Scholar 

  • Nielsen, D. L., T. J. Hillman, F. J. Smith & R. J. Shiel, 2002. The influence of seasonality and duration of flooding on zooplankton in experimental billabongs. River Research and Applications 18: 227–237.

    Article  Google Scholar 

  • O’Neill, B. J., 2016. Community disassembly in ephemeral ecosystems. Ecology 97: 3285–3292.

    Article  PubMed  Google Scholar 

  • Obertegger, U. & G. Flaim, 2018. Taxonomic and functional diversity of rotifers, what do they tell us about community assembly? Hydrobiologia 823: 79–91.

    Article  Google Scholar 

  • Obertegger, U., H. A. Smith, G. Flaim & R. L. Wallace, 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662: 157–162.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2019. Vegan: an introduction to ordination. Community Ecology Package. R package version 2.5–6. Available online: https://rdrr.io/cran/vegan/. Accessed on Aug 01, 2020.

  • Palazzo, F., F. F. Bomfim, J. D. Dias, N. R. Simões, F. A. Lansac-Tôha & C. C. Bonecker, 2021. Temporal dynamics of rotifers’ feeding guilds shaped by chlorophyll-a, nitrate, and environmental heterogeneity in subtropical floodplain lakes. International Review of Hydrobiology 106: 95–105.

    Article  CAS  Google Scholar 

  • Pinceel, T., B. Vanschoenwinkel, W. Hawinkel, K. Tuytens & L. Brendonck, 2017. Aridity promotes bet hedging via delayed hatching: a case study with two temporary pond crustaceans along a latitudinal gradient. Oecologia 184: 161–170.

    Article  PubMed  Google Scholar 

  • R Core Team, 2020. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria:

    Google Scholar 

  • Ríos-Arana, J., L. C. Agüero-Reyes, R. L. Wallace & E. J. Walsh, 2019. Limnological characteristics and rotifer community composition of northern Mexico Chihuahuan Desert springs. Journal of Arid Environments 160: 32–41.

    Article  Google Scholar 

  • Ripley, B. & M. A. Simovich, 2009. Species richness on islands in time: variation in ephemeral pond crustacean communities in relation to habitat duration. Hydrobiologia 617: 181–196.

    Article  Google Scholar 

  • Rivas, J. A., Jr., J. Mohl, R. S. Van Pelt, M.-Y. Leung, R. L. Wallace, T. E. Gill & E. J. Walsh, 2018. Evidence for regional aeolian transport of freshwater biota in an arid region. Limnology and Oceanography Letters 3: 320–330.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivas, J. A., Jr., T. Schröder, T. E. Gill, R. L. Wallace & E. J. Walsh, 2019. Anemochory of diapausing stages of microinvertebrates in North American drylands. Freshwater Biology 64: 1303–1314.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizo, E. Z. C., Y. Gu, R. D. S. Papa, H. J. Dumont & B.-P. Han, 2017. Identifying functional groups and ecological roles of tropical and subtropical freshwater Cladocera in Asia. Hydrobiologia 799: 83–99.

    Article  Google Scholar 

  • Rodríguez-Rodríguez, M., 2007. Hydrogeology of ponds, pools, and playa-lakes of southern Spain. Wetlands 27: 819–830.

    Article  Google Scholar 

  • Rousselet, C. F., 1909. On the geographic distribution of the Rotifera. Journal of the Quekett Microscopical Club Series 2(10): 465–470.

    Google Scholar 

  • Schröder, T., S. Howard, L. Arroyo & E. J. Walsh, 2007. Sexual reproduction and diapause of Hexarthra sp. (Rotifera) in short-lived Chihuahuan desert ponds. Freshwater Biology 52: 1033–1042.

    Article  Google Scholar 

  • Scuderi, L. A., C. K. Laudadio & P. J. Fawcett, 2010. Monitoring playa lake inundation in the western United States: modern analogues to late-Holocene lake level change. Quaternary Research 73: 48–58.

    Article  Google Scholar 

  • Segers, H. & H. J. Dumont, 1993. Rotifera from Arabia, with descriptions of two new species. Fauna of Saudi Arabia 13: 3–26.

    Google Scholar 

  • Sferra, C. O., J. L. Hart & J. G. Howeth, 2017. Habitat age influences metacommunity assembly and species richness in successional pond ecosystems. Ecosphere 8: e01871.

    Article  Google Scholar 

  • Sharma, B. K. & Dudani, 1992. Rotifers from some tropical ponds in Bihar: species composition, similarities and trophic indicators. Journal of the Indian Institute of Science 72: 121–130.

    Google Scholar 

  • Shiel, R. J. & W. Koste, 1983. Rotifer communities of billabongs in northern and south-eastern Australia. Hydrobiologia 104: 41–47.

    Article  Google Scholar 

  • Sim, L. L., J. A. Davis, K. Strehlow, M. McGuire, K. M. Trayler, S. Wild, P. J. Papas & J. O’Connor, 2013. The influence of changing hydroregime on the invertebrate communities of temporary seasonal wetlands. Freshwater Science 32: 327–342.

    Article  Google Scholar 

  • Smith, H. A. & T. W. Snell, 2012. Rapid evolution of sex frequency and dormancy as hydroperiod adaptations. Journal of Evolutionary Biology 25: 2501–2510.

    Article  CAS  PubMed  Google Scholar 

  • Spasojevic, M. J., C. P. Catano, J. A. Lamanna & J. A. Myers, 2018. Integrating species traits into species pools. Ecology 99: 1265–1276.

    Article  PubMed  Google Scholar 

  • Stroud, J. T., S. T. Giery, M. Outerbridge & K. J. Feeley, 2019. Ecological character displacement alters the outcome of priority effects during community assembly. Ecology 100: e02727.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, Y. & E. P. Economo, 2021. From species sorting to mass effects: spatial network structure mediates the shift between metacommunity archetypes. Ecography 44: 1–12.

    Article  Google Scholar 

  • Symons, C. C. & S. E. Arnott, 2013. Regional zooplankton dispersal provides spatial insurance for ecosystem function. Global Change Biology 19: 1610–1619.

    Article  PubMed  Google Scholar 

  • Symons, C. C. & S. E. Arnott, 2014. Timing is everything: priority effects alter community invasibility after disturbance. Ecology and Evolution 4: 397–407.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ter Braak, C. J. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.

    Article  Google Scholar 

  • Urban, M. C., S. Y. Strauss, F. Pelletier, E. P. Palkovacs, M. A. Leibold, A. P. Hendry, L. De Meester, S. M. Carlson, A. L. Angert & S. T. Giery, 2020. Evolutionary origins for ecological patterns in space. PNAS 117: 17482–17490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valente-Neto, F., L. Durães, T. Siqueira & F. O. Roque, 2018. Metacommunity detectives: confronting models based on niche and stochastic assembly scenarios with empirical data from a tropical stream network. Freshwater Biology 63: 86–99.

    Article  Google Scholar 

  • Vanschoenwinkel, B., M. Seaman & L. Brendonck, 2010. Hatching phenology, life history and egg bank size of fairy shrimp Branchipodopsis spp. (Branchiopoda, Crustacea) in relation to the ephemerality of their rock pool habitat. Aquatic Ecology 44: 771–780.

    Article  Google Scholar 

  • Vargas, A. L., J. M. Santangelo & R. L. Bozelli, 2019. Recovery from drought: viability and hatching patterns of hydrated and desiccated zooplankton resting eggs. International Review of Hydrobiology 104: 26–33.

    Article  Google Scholar 

  • Vilmi, A., C. Gibert, G. Escarguel, K. Happonen, J. Heino, A. Jamoneau, S. I. Passy, F. Picazo, J. Soininen, J. Tison-Rosebery & J. Wang, 2021. Dispersal–niche continuum index: a new quantitative metric for assessing the relative importance of dispersal versus niche processes in community assembly. Ecography 44: 1–10.

    Article  Google Scholar 

  • Wallace, R. L., T. W. Snell & H. A. Smith, 2015. Phylum Rotifera. In Thorp, J. H. & D. C. Rogers (eds), Thorp and Covich’s freshwater invertebrates, vol. I. Elsevier, Waltham, MA: 225–271. Ecology and General Biology.

    Chapter  Google Scholar 

  • Walsh, E. J., T. Schröder, R. L. Wallace, J. V. Ríos Arana & R. Rico-Martínez, 2008. Rotifers from selected inland saline waters in the Chihuahuan Desert of México. Saline Systems 4: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh, E. J., H. A. Smith & R. L. Wallace, 2014. Rotifers of temporary waters. International Review of Hydrobiology 99: 3–19.

    Article  Google Scholar 

  • Walsh, E. J., M. L. Arroyo, T. Schröder, & R. L. Wallace. 2014b. Species richness and species turnover (complementarity) of Rotifera in selected aquatic systems of Big Bend National Park, Texas. In: Hoyt, C. A., J. Karges (eds) Sixth Symposium on the Natural Resources of the Chihuahuan Desert Region October 14–17, 2004, Fort Davis, TX, 2014a. Chihuahuan Desert Research Institute, Fort Davis, TX, p 185–204.

  • Wedderburn, S. D., K. A. Hillyard & R. J. Shiel, 2013. Zooplankton response to flooding of a drought refuge and implications for the endangered fish species Craterocephalus fluviatilis cohabiting with alien Gambusia holbrooki. Aquatic Ecology 47: 263–275.

    Article  Google Scholar 

  • Weir Jr., J. E. 1965. Geology and availability of ground water in the northern part of the White Sands Missile Range and vicinity, New Mexico. Geological Survey Water-Supply Paper 1801. US Government Printing Office, Washington, D.C.

  • Weithoff, G., C. Neumann, J. Seiferth & T. Weisse, 2019. Living on the edge: reproduction, dispersal potential, maternal effects and local adaptation in aquatic, extremophilic invertebrates. Aquatic Sciences 81: 1–9.

    Article  CAS  Google Scholar 

  • Wellborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology & Systematics 27: 337–363.

    Article  Google Scholar 

  • Wen, X.-L., Y.-L. Xi, F.-P. Qian, G. Zhang & X.-L. Xiang, 2011. Comparative analysis of rotifer community structure in five subtropical shallow lakes in East China: role of physical and chemical conditions. Hydrobiologia 661: 303–316.

    Article  CAS  Google Scholar 

  • Yan, N. D. & W. Geiling, 1985. Elevated planktonic rotifer biomass in acidified metal-contaminated lakes near Sudbury, Ontario. Hydrobiologia 120: 199–205.

    Article  CAS  Google Scholar 

  • Yang, J. & X. Zhang, 2020. eDNA metabarcoding in zooplankton improves the ecological status assessment of aquatic ecosystems. Environment International 134: 105230.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, T., J. Urabe & J. J. Elser, 2003. Assessment of ‘top-down’ and ‘bottom-up’ forces as determinants of rotifer distribution among lakes in Ontario, Canada. Ecological Research 18: 639–650.

    Article  Google Scholar 

  • Zawierucha, K., D. L. Porazinska, G. F. Ficetola, R. Ambrosini, G. Baccolo, J. Buda, J. L. Ceballos, M. Devetter, R. Dial, A. Franzetti, U. Fuglewicz, L. Gielly, E. Łokas, K. Janko, T. Novotna Jaromerska, A. Kościński, A. Kozłowska, M. Ono, P. I. F. Pittino, E. Poniecka, P. Sommers, S. K. Schmidt, D. Shain, S. Sikorska, J. Uetake & N. Takeuchi, 2021. A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. Journal of Zoology 313: 18–36.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two reviewers and the editors who made helpful suggestions to improve the manuscript. A. Adabache, R. Galván-De la Rosa, J. and B. Newlin, M. Sigla Arana, P.L. Starkweather, N. Lannutti and many undergraduate and graduate students in the Walsh lab provided field assistance. We collected samples from Méxican sampling sites under permit #09436 from the Secretaría de Medio Ambiente y Recursos Naturales to M. Silva- Briano. USA samples were collected under permits (to E. Walsh) BIBE-2001-SCI-0058, BIBE-2006-SCI-0003, BIBE-2016-SCI-0057, BIBE-2001-SCI-0012, TPW 02-04, #66-99, #07-02, 2011-13, 2013-01, 2014-01, 2015-03, 2017-R1-19, WHSA-2009-SCI-0011, WHSA-2010-SCI-0008, WHSA-2009-SCI-0011, WHSA-2009-SCI-0-007, WHSA-2012-SCI-0001, WHSA-2014-SCI-0011, and WHSA-2016-SCI-009. We thank the local property owners for permission to sample Ojo de La Casa. H. Segers provided expert review of some of our species identifications.

Funding

Our research was funded, in part, by the following: American Association for the Advancement of Science Women's International Science Collaboration (WISC) travel grant award (Walsh); NSF Grants: DEB #0516032, #1257068, and # 2051704 (UTEP); NSF Advance #0245071 (UTEP); NIH 5G12RR008124; T & E, Inc.; DEB #1257116 and 2051710 (Ripon College); and Funds for Faculty Development (Ripon College). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

EJW, RLW, PDB: validation, PDB, EJW, RLW: formal analysis, PDB, RLW, EJW: investigation, EJW, TS, RRM, JVAR, MBS, RLW: resources, EJW, RLW, RRM, MSB, JVRA: data curation, EJW: writing—original draft preparation, RLW, PDB, EJW: writing—review and editing, EJW, TS, RRM, JVRA, MBS, RLW, PDB: project administration, EJW, RLW: funding acquisition, EJW, RLW: All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to E. J. Walsh.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest/competing interests. The sponsors had no role in the design, execution, interpretation, or writing of the study.

Ethical Approval

The appropriate agencies provided collecting permits (see acknowledgments). None of the specimens that we collected are endangered or threatened. Sampling and processing protocols followed appropriate guidelines established by state and federal parks.

Availability of data and material

Data are available from the corresponding author, but most species data and site coordinates are available in Brown et al. (2020). Metadata are available at: https://datarepo.bioinformatics.utep.edu/getdata?acc=9UX5TMO7PXAMPZK

Code availability

Not applicable.

Additional information

Guest editors: José L. Attayde, Renata F. Panosso, Vanessa Becker, Juliana D. Dias & Erik Jeppesen/Advances in the Ecology of Shallow Lakes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, P.D., Schröder, T., Ríos-Arana, J.V. et al. Processes contributing to rotifer community assembly in shallow temporary aridland waters. Hydrobiologia 849, 3719–3735 (2022). https://doi.org/10.1007/s10750-022-04842-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04842-8

Keywords

Navigation