Skip to main content

Advertisement

Log in

Grazing impacts on phytoplankton in South American water ecosystems: a synthesis

  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The role of grazing as a controlling factor of phytoplankton has an extensive debate in the literature. In this article, five mechanisms that have been explored as potential controlling factors of grazing influence on phytoplankton in South America are discussed and compared with other latitudinal works. The temperature impact on zooplankton is not conclusive, with planktivorous fish appearing as the main controlling factor of zooplankton size ranges. Fish grazing effects on phytoplankton look despicable, but the impact of exotic filter-feeding fish remains controversial. Microphagous rotifers and Copepoda nauplii affect phytoplankton by selective size grazing, while large Cladocera and Copepoda adults can control phytoplankton when they reach high densities in the absence of fish. Both groups mainly feed on small sizes, with microzooplankton having a higher impact on very small phytoplankton. Some contradictory evidence arises for large colonial and filamentous algae. Exotic invasive filter-feeding bivalves are selective grazers in experimental approximations. Corbicula fluminea feeds on smaller particles, does not have taxonomic preferences, and has lower densities in nature than Limnoperna fortunei. Their effect on nature is not fully documented. In sum, several aspects still need deep scrutiny to fully understand the role of grazing on phytoplankton in South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agasild, H., P. Zingel, I. Tõnno, J. Haberman & T. Nõges, 2007. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia 584: 167–177.

    Google Scholar 

  • Agostinho, A. A., L. Gomes & M. Zalewski, 2001. The importance of floodplains for the dynamics of fish communities of the upper river Paraná. Ecohydrology and Hydrobiology 1: 209–217.

    Google Scholar 

  • Allan, J. D. & M. M. Catillo, 2007. Streams Ecology: Structure and Function of Running Waters, Springer, Amsterdam:

    Google Scholar 

  • Amorim, C. A., C. R. Valenc, R. H. de Moura-Falcão & A. do Nascimento Moura, 2019. Seasonal variations of morpho-functional phytoplankton groups influence the top-down control of a cladoceran in a tropical hypereutrophic lake. Aquatic Ecology 53: 453–464.

    CAS  Google Scholar 

  • Angilletta, M. J. & A. E. Dunham, 2003. The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. The American Naturalist 162: 332–342.

    PubMed  Google Scholar 

  • Atkinson, C. L., 1995. Temperature and organism size: a biological law for ectotherms? Advances in Ecological Research 25: 1–58.

    Google Scholar 

  • Atkinson, C. L., M. R. First, A. P. Covich, S. P. Opsahl & S. W. Golladay, 2011. Suspended material availability and filtration-biodeposition processes performed by a native and invasive bivalve species in streams. Hydrobiologia 667: 191–204.

    CAS  Google Scholar 

  • Attayde, J. L. & R. F. Menezes, 2008. Effects of fish biomass and planktivore type on plankton communities. Journal of Plankton Research 30: 885–892.

    Google Scholar 

  • Attayde, J. L., E. H. van Nes, A. I. Araujo, G. Corso & M. Scheffer, 2010. Omnivory by planktivores stabilizes plankton dynamics, but may either promote or reduce algal biomass. Ecosystems 13: 410–420.

    Google Scholar 

  • Ayala, R., D. Rejas & S. Declerck, 2003. Efectos de los peces sobre el fitoplancton de una laguna de várzea (Laguna Bufeos, Bolivia). Revista Boliviana De Ecología y Conservación Ambiental 14: 1.

    Google Scholar 

  • Baer, A., C. Langdon, S. Mills, C. Schulz & K. Hamre, 2008. Particle size preference, gut filling and evacuation rates of the rotifer Brachionus “Cayman” using polystyrene latex beads. Aquaculture 282: 75–82.

    Google Scholar 

  • Balseiro, E. G., C. P. Queimaliños & B. E. Modenutti, 2004. Grazing impact on autotrophic picoplankton in two south Andean lakes (Patagonia, Argentina) with different light:nutrient ratios. Revista Chilena De Historia Natural 77: 73–85.

    Google Scholar 

  • Balseiro, E., B. Modenutti, C. Queimaliños & M. Reissig, 2007. Daphnia distribution in Andean Patagonian lakes: effect of low food quality and fish predation. Aquatic Ecology 41: 599–609.

    CAS  Google Scholar 

  • Basu, B. K. & F. R. Pick, 1997. Phytoplankton and zooplankton development in a lowland temperature river. Journal of Plankton Research 19: 237–253.

    Google Scholar 

  • Beaver, J. R., T. L. Crisman & R. J. Brock, 1991. Grazing Effects of an exotic bivalve (Corbicula fluminea) on Hypereutrophic Lake. Water, Lake and Reservoir Management 7: 45–51.

    Google Scholar 

  • Benndorf, J., W. Böing, J. Koop & I. Neubauer, 2002. Top-down control of phytoplankton: the role of time scale, lake depth and trophic state. Freshwater Biology 47: 2282–2295.

    Google Scholar 

  • Bernes, C., S. R. Carpenter, A. Gårdmark, P. Larsson, L. Persson, C. Skov & E. Van Donk, 2015. What is the influence of a reduction of planktivorous and benthivorous fish on water quality in temperate eutrophic lakes? A systematic review. Environmental Evidence 4: 7.

    Google Scholar 

  • Beveridge, M. C. & D. J. Baird, 2000. Diet, feeding and digestive physiology. In Beveridge, M. C. M. & B. J. McAndrew (eds), Tilapias: Biology and Exploitation Fish and Fisheries Series. Springer, Dordrecht.

    Google Scholar 

  • Bogdan, K. G. & J. J. Gilbert, 1982. Seasonal patterns of feeding by natural populations of Keratella, Polyarthra, and Bosmina: clearance rates, selectivities, and contributions to community grazing. Limnology and Oceanography 27: 918–934.

    Google Scholar 

  • Bolgovics, A., G. Várbíró, E. Ács, Z. Trábert, K. T. Kiss, V. Pozderka & G. Borics, 2017. Phytoplankton of rhithral rivers: its origin, diversity, and possible use for quality-assessment. Ecological Indicators 81: 587–596.

    Google Scholar 

  • Boltovskoy, D., I. Izaguirrel & N. Correa, 1995. Feeding selectivity of Cubicula fluminea (Bivalve) on natural phytoplankton. Hydrobiologia 312: 171–182.

    Google Scholar 

  • Boltovskoy, D., N. Correa, F. Sylvester & D. Cataldo, 2015. Nutrient recycling, phytoplankton grazing, and associated impacts of Limnoperna fortunei. In Boltovskoy, D. (ed), Limnoperna fortunei: The Ecology, Distribution, and Control of a Swiftly Spreading Invasive Fouling Mussel. Springer, Cham.

    Google Scholar 

  • Bothar, A., 1987. The estimation of production and mortality of Bosmina longirostris (OF Müller) in the River Danube (Daubialia Hungarica, CIX). Hydrobiologia 145: 285–291.

    Google Scholar 

  • Bouvy, M., M. Pagano & M. Troussellier, 2001. Effects of a cyanobacterial bloom (Cylindrospermopsis raciborskii) on bacteria and zooplankton communities in Ingazeira reservoir (northeast Brazil). Aquatic Microbial Ecology 25: 215–227.

    Google Scholar 

  • Boveri, M. B. & R. Quirós, 2002. Trophic interactions in Pampean shallow lakes: evaluation of silverside predatory effects on mesocosm experiments. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie 28: 1274–1278.

    CAS  Google Scholar 

  • Brooks, L. J., 1968. The effects of prey size selection by lake planktivores. Systems Biology 17: 273–291.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    CAS  PubMed  Google Scholar 

  • Bruno, E., C. M. AndersenBorg & T. Kiørboe, 2012. Prey detection and prey capture in copepod nauplii. PLoS ONE 7: e47906.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burns, C. W., 1969. Relation between filtering rate, temperature and body size in four species of Daphnia. Limnology and Oceanography 14: 693–700.

    Google Scholar 

  • Caparroy, P., U. H. Thygesen & A. W. Visser, 2000. Modelling the attack success of planktonic predators: patterns and mechanisms of prey size selectivity. Journal of Plankton Research 22: 1871–1900.

    Google Scholar 

  • Caraco, N. F., J. J. Cole, P. A. Raymond, D. L. Strayer, M. L. Pace, S. E. G. Findlay & D. T. Fischer, 1997. Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78: 588–602.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cocharan, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer & X. He, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    CAS  PubMed  Google Scholar 

  • Cataldo, D., I. O’Farrell, E. Paolucci, F. Sylvester & D. Boltovskoy, 2012a. Impact of the invasive golden mussel (Limnoperna fortunei) on phytoplankton and nutrient cycling. Aquatic Invasions 7: 91–100.

    Google Scholar 

  • Cataldo, D., A. Vinocur, I. O’Farrell, E. Paolucci, V. Leites & D. Boltovskoy, 2012b. The introduced bivalve Limnoperna fortunei boosts Microcystis growth in Salto Grande reservoir (Argentina): evidence from mesocosm experiments. Hydrobiologia 680: 25–38.

    CAS  Google Scholar 

  • Cazzanelli, M., T. W. Perlt & K. S. Christoffersen, 2008. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia 605: 113–122.

    Google Scholar 

  • Chakrabarty, P., 2004. Cichlid biogeography: comment and review. Fish and Fisheries 5: 97–11.

    Google Scholar 

  • Cohen, R. H., P. V. Dresler, J. P. Phillips & R. L. Cory, 1984. The effect of the Asiatic clam, Corbicula fluminea in phytoplankton of the Potomac River, Maryland. Limnology and Oceanography 29: 170–180.

    Google Scholar 

  • Colina, M., D. Calliari, C. Carballo & C. Kruk, 2016. A trait-based approach to summarize zooplankton–phytoplankton interactions in freshwaters. Hydrobiologia 767: 221–233.

    CAS  Google Scholar 

  • Costa Bonecker, C., F. de Azevedo & R. N. Simões, 2012. Zooplankton body-size structure and biomass in tropical floodplain lakes: relationship with planktivorous fishes. Acta Limnologica Brasiliensia 23: 217–228.

    Google Scholar 

  • Cyr, H. & J. M. Curtis, 1999. Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia 188: 306–315.

    Google Scholar 

  • Cyr, H. & M. Pace, 1992. Grazing by zooplankton and its relationship to community structure. Canadian Journal of Fisheries and Aquatic Sciences 49: 1455–1565.

    Google Scholar 

  • da Silveira Suçuarana, M. S., L. Rocha Virgílio & L. J. Soares Vieira, 2016. Trophic structure of fish assemblages associated with macrophytes in lakes of an abandoned meander on the middle river Purus, Brazilian Amazon. Acta Scientiarum. Biological Sciences Maringá 38: 37–46.

    Google Scholar 

  • Darrigran, G., I. Agudo-Padrón, P. Baez, C. Belz, F. Cardoso, A. Carranza, G. Collado, M. Correoso, M. G. Cuezzo, A. Fabres, D. E. Gutiérrez Gregoric, S. Letelier, S. Ludwig, M. C. Mansur, G. Pastorino, P. Penchaszadeh, C. Peralta, A. Rebolledo, A. Rumi, S. Santos, S. Thiengo, T. Vidigal & C. Damborenea, 2020. Non-native mollusks throughout South America: emergent patterns in an understudied continent. Biological Invasions 22: 853–871.

    Google Scholar 

  • Dary, E. P., E. Ferreira, J. Zuanon & C. P. Röpke, 2017. Diet and trophic structure of the fish assemblage in the mid-course of the Teles Pires River, Tapajós River basin, Brazil. Neotropical Ichthyology 15: e160173.

    Google Scholar 

  • de los Ríos Escalante, P. R. & F. Kies, 2017. Calanoid copepods in central Chilean and Chilean patagonian lakes (33–55°s, chile), probable ecological key role in pelagic environments. Crustaceana 90: 1793–1802.

    Google Scholar 

  • de Mérona, B. L. & R. Vigouroux, 2006. Diet changes in fish species from a large reservoir in South America and their impact on the trophic structure of fish assemblages (Petit- Saut Dam, French Guiana). Annales De Limnologie - International Journal of Limnology 42: 53–61.

    Google Scholar 

  • de Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. Huszar, B. W. Ibelings, E. Jeppesen, S. Kosten, W. M. Mooij & F. Roland, 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biology 58: 463–482.

    Google Scholar 

  • Delariva, R. L., N. Segatti Hahn & E. A. L. Kashiwaqui, 2013. Diet and trophic structure of the fish fauna in a subtropical ecosystem: impoundment effects. Neotropical Ichthyology 11: 891–904.

    Google Scholar 

  • DeMott, W. R., R. Gulati & E. Van Donk, 2001. Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnology and Oceanography 46: 2054–2060.

    Google Scholar 

  • DeMott, W. R., E. N. McKinney & A. J. Tessier, 2010. Ontogeny of digestion in Daphnia: implications for the effectiveness of algal defenses. Ecology 91: 540–548.

    PubMed  Google Scholar 

  • Devetter, M., 2009. Clearance rates of the bdelloid rotifer, Habrotrocha thienemanni, a tree-hole inhabitant. Aquatic Ecology 43: 85–89.

    CAS  Google Scholar 

  • DeVries, D. R. & R. A. Stein, 1992. Complex interactions between fish and zooplankton: quantifying the role of an open-water planktivore. Canadian Journal of Fisheries and Aquatic Sciences 49: 1216–1227.

    Google Scholar 

  • Diniz, A. S., J. S. Dos Santos Severiano, M. Melo Júnior, Ê. W. Dantas & A. N. Moura, 2019. Phytoplankton–zooplankton relationships based on phytoplankton functional groups in two tropical reservoirs. Marine and Freshwater Research 70: 721–733.

    CAS  Google Scholar 

  • Dionisio Pires, L. M. & E. Van Donk, 2002. Comparing grazing by Dreissena polymorpha on phytoplankton in the presence of toxic and non-toxic cyanobacteria. Freshwater Biology 47: 1855–1865.

    Google Scholar 

  • Dionisio Pires, L. M., R. R. Jonker, E. Van Donk & H. J. Laanbroek, 2004. Selective grazing by adults and larvae of the zebra mussel (Dreissena polymorpha): application of flow cytometry to natural seston. Freshwater Biology 49: 116–126.

    Google Scholar 

  • Dölle, K. & D. E. Kurzmann, 2020. The freshwater mollusk Dreissena polymorpha (Zebra Mussel): a review: living, prospects and jeopardies. Asian Journal of Environment & Ecology 13: 1–17.

    Google Scholar 

  • Dos Santos Severiano, J., V. L. S. Almeida-Melo, E. M. Melo-Magalhães & M. D. Bittencourt-Oliveira, 2017. Effects of zooplankton and nutrients on phytoplankton: an experimental analysis in a eutrophic tropical reservoir. Marine and Freshwater Research 68: 1061–1069.

    Google Scholar 

  • Dos Santos Severiano, J., V. L. S. Almeida-Melo, M. C. Bittencourt-Oliveira & M. A. Chia, 2018. Effects of increased zooplankton biomass on phytoplankton and cyanotoxins: a tropical mesocosm study. Harmful Algae 71: 10–18.

    PubMed  Google Scholar 

  • Drenner, R. W., S. T. Threlkeld & M. D. McCracken, 1986. Experimental analysis of the direct and indirect effects of an omnivorous filter-feeding clupeid on plankton community structure. Canadian Journal of Fisheries and Aquatic Sciences 43: 1935–1945.

    Google Scholar 

  • Dussart, B. H. & D. Defaye, 2001. Introduction to the Copepoda, Backhuys, Winschoten:

    Google Scholar 

  • Eskinazi Sant’Anna, E. M., P. M. Maia-Barbosa & F. A. R. Barbosa, 2002. On the natural diet of Daphnia laevis in the eutrophic Pampulha Reservoir (Belo Horizonte, Minas Gerais). Brazilian Journal of Biology 62: 445–452.

    CAS  Google Scholar 

  • Figeredo, C. C. & A. Gianni, 2005. Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshwater Biology 50: 1391–1403.

    Google Scholar 

  • Fonseca da Silva, J. V., M. T. Baumgartner, M. R. Miracle, J. D. Dias, L. C. Rodrigues & C. Costa Bonecker, 2019. Can zooplankton grazing affect the functional features of phytoplankton in subtropical shallow lakes? Experiment in situ in the south of Brazil. Limnetica 38: 773–785.

    Google Scholar 

  • Frau, D., F. Rojas Molina, M. Devercelli & S. José de Paggi, 2013. The effect of an invading filter-feeding bivalve on a phytoplankton assemblage in the Paraná system: a mesocosm experiment. Marine and Freshwater Behavior and Physiology 45: 303–316.

    Google Scholar 

  • Frau, D., Y. Battauz, G. Mayora & P. Marconi, 2015. Controlling factors in planktonic communities over a salinity gradient in high altitude lakes. Annales De Limnologie - International Journal of Limnology 51: 261–272.

    Google Scholar 

  • Frau, D., F. Rojas Molina & G. Mayora, 2016. Feeding selectivity of the invasive mussel Limnoperna fortunei (Dunker, 1857) on a natural phytoplankton assemblage: what really matters? Limnology 17: 47–57.

    CAS  Google Scholar 

  • Frau, D., Y. Battauz & R. Sinistro, 2017. Why predation is not a controlling factor of phytoplankton in a Neotropical shallow lake: a morpho-functional perspective. Hydrobiologia 788: 115–130.

    CAS  Google Scholar 

  • Frau, D., Y. Battauz, P. Alvarenga, P. Scarabotti, G. Mayora & R. Sinistro, 2019. Assessing the relevance of top down and bottom-up effects as phytoplankton structure drivers in a subtropical hypereutrophic shallow lake. Aquatic Ecology 53: 265–280.

    CAS  Google Scholar 

  • Frau, D., M. F. Gutierrez, F. Rojas Molina & F. Texeira de Melo, 2020a. Drivers assessment of zooplankton grazing on phytoplankton under different scenarios of fish predation and turbidity in an in situ mesocosm experiment. Hydrobiologia 848: 485–498.

    Google Scholar 

  • Frau, D., M. F. Gutierrez, L. Regaldo, M. Saigo & M. Licursi, 2020b. Plankton community responses in Pampean lowland streams linked to intensive agricultural pollution. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2020.106934.

    Article  Google Scholar 

  • Fulton, R. S., 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwater Biology 20: 263–271.

    Google Scholar 

  • García, M. L. & L. C. Protogino, 2005. Invasive freshwater molluscs are consumed by native fishes in South America. Journal of Applied Ichthyology 21: 34–38.

    Google Scholar 

  • Gardener, M. B., 1981. Mechanisms of size selectivity by planktivorous fish: a test of hypotheses. Ecology 62: 571–578.

    Google Scholar 

  • Gazulha, V., M. C. D. Mansur, L. F. Cybis & S. M. F. O. Azevedo, 2012a. Grazing impacts of the invasive bivalve Limnoperna fortunei (Dunker, 1857) on single-celled, colonial and filamentous cyanobacteria. Brazilian Journal of Biology 72: 33–39.

    CAS  Google Scholar 

  • Gazulha, V., M. C. D. Mansur, L. F. Cybis & S. M. F. O. Azevedo, 2012b. Feeding behavior of the invasive bivalve Limnoperna fortunei (Dunker, 1857) under exposure to toxic cyanobacteria Microcystis aeruginosa. Brazilian Journal of Biology 72: 41–49.

    CAS  Google Scholar 

  • Ger, K. A., R. Panosso & M. Lürling, 2011. Consequences of acclimation to Microcystis on the selective feeding behavior of the calanoid copepod Eudiaptomus gracilis. Limnology and Oceanography 56: 2103–2114.

    Google Scholar 

  • Ger, K. A., L. A. Hansson & M. Lürling, 2014. Understanding cyanobacteria–zooplankton interactions in a more eutrophic world. Freshwater Biology 59: 1783–1798.

    Google Scholar 

  • Ger, K. A., E. J. Faassen, M. G. Pennino & M. Lürling, 2016. Effect of the toxin (microcystin) content of Microcystis on copepod grazing. Harmful Algae 52: 34–45.

    CAS  PubMed  Google Scholar 

  • Ger, K. A., S. Naus-Wiezer, L. De Meester & M. Lürling, 2018. Zooplankton grazing selectivity regulates herbivory and dominance of toxic phytoplankton over multiple prey generations. Limnology & Oceanography 9999: 1–18.

    Google Scholar 

  • Gillooly, J. F., 2000. Effect of body size and temperature on generation time in zooplankton. Journal of Plankton Research 22: 241–251.

    Google Scholar 

  • Gillooly, J. F. & S. I. Dodson, 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnology and Oceanography 45: 22–30.

    Google Scholar 

  • Gliwicz, Z. M., 1994. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia 272: 201–210.

    Google Scholar 

  • Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. Chapter 7. In Sommer, U. (ed), Plankton Ecology. Springer, New York.

    Google Scholar 

  • Grutters, B. M. C., B. J. A. Pollux, W. C. E. P. Verberk & E. S. Bakker, 2015. Native and non-native plants provide similar refuge to invertebrate prey, but less than artificial plants. PLoS ONE 10(4): e0124455.

    PubMed  PubMed Central  Google Scholar 

  • Gutierrez, M. F., F. Rojas Molina, F. Texeira de Melo, D. Frau & C. Antoñazzi, 2021. Influence of fish predation on the dynamic of zooplankton and macroinvertebrates in floodplain lakes under different turbidity conditions: an experimental study. Aquatic Sciences 83: 48.

    Google Scholar 

  • Hambright, K. D., 2008. Long-term zooplankton body size and species changes in a subtropical lake: implications for lake management. Fundamental and Applied Limnology Archiv Für Hydrobiologie 173: 1–13.

    CAS  Google Scholar 

  • Havens, K., J. R. Beaver & T. L. East, 2007. Plankton biomass partitioning in a eutrophic subtropical lake: comparison with results from temperate lake ecosystems. Journal of Plankton Research 12: 1087–1097.

    Google Scholar 

  • Havens, K. E., A. C. Elia, M. I. Taticchi & R. Fulton, 2009. Zooplankton– phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia 628: 165–175.

    CAS  Google Scholar 

  • Havens, K. E., R. Motta Pinto-Coelho, M. Beklioğlu, K. S. Christoffersen, E. Jeppesen, T. L. Lauridsen, A. Mazumder, G. Méthot, B. Pinel Alloul, U. N. Tavşanoğlu, Ş Erdoğan & J. Vijverberg, 2015. Temperature effects on body size of freshwater crustacean zooplankton from Greenland to the tropics. Hydrobiologia 743: 27–35.

    CAS  Google Scholar 

  • Horn, W., 2003. Long-term development of the crustacean plankton in the Saidenbach Reservoir (Germany): changes, causes, consequences. Hydrobiologia 504: 185–192.

    Google Scholar 

  • Hwang, S., H. Kim, J. Shin, J. Oh & D. Kong, 2004. Grazing effects of a freshwater bivalve (Corbicula leana Prime) and large zooplankton on phytoplankton communities in two Korean lakes. Hydrobiologia 515: 161–179.

    Google Scholar 

  • Hylander, S., M. S. Souza, E. Balseiro, B. Modenutti & L. A. Hansson, 2012. Fish mediated trait compensation in zooplankton. Functional Ecology 26: 608–615.

    Google Scholar 

  • Iglesias, C., N. Mazzeo, G. Goyenola, C. Fosalba, F. Teixeira de Mello, S. García & E. Jeppesen, 2008. Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous–planktivorous fish, on the size distribution of zooplankton in subtropical lakes. Freshwater Biology 53: 1797–1807.

    Google Scholar 

  • Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. García Alonso, S. Lildal Amsinck, J. C. Paggi, S. B. José de Paggi & E. Jeppesen, 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish enclosures and surface sediments. Hydrobiologia 667: 133–147.

    Google Scholar 

  • Ituarte, C. F., 1981. Primera noticia acerca de la presencia de pelecípodos asiáticos en el área rioplatense. Neotropica 27: 79–82.

    Google Scholar 

  • Jeppesen, E., T. Lauridsen, S. F. Mitchell & C. W. Burns, 1997. Do planktivorous fish structure the zooplankton communities in New Zealand lakes? New Zealand Journal of Marine and Freshwater Research 31: 163–173.

    Google Scholar 

  • Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Sondergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation: the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.

    CAS  Google Scholar 

  • Jönsson, M., L. Ranåker, A. Nicolle, P. Ljungberg, T. Fagerberg, S. Hylander, T. Jephson, K. Lebret, J. von Einem, L. A. Hansson, P. A. Nilsson, E. Balseiro & B. Modenutti, 2011. Glacial clay affects foraging performance in a Patagonian fish and cladoceran. Hydrobiologia 663: 101–108.

    Google Scholar 

  • José de Paggi, S. & J. C. Paggi, 1985. Zooplancton de los cuerpos de agua preexistentes en el área del Embalse Amutui Quimei (Cuenca del Río Futaleufu). Neotropica 31: 119–131.

    Google Scholar 

  • José de Paggi, S. & J. C. Paggi, 2008. Hydrological connectivity as a shaping force in the zooplankton community of two lakes in the Paraná River floodplain. International Review of Hydrobiology 93: 659–678.

    Google Scholar 

  • Joséde Paggi, S. & J. C. Paggi, 2007. Zooplankton. Chapter 9. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Berlin.

    Google Scholar 

  • Kâ, S., J. M. Mendoza-Vera, M. Bouvy, G. Champalbert, R. N’Gom-Kâ & M. Pagano, 2012. Can tropical freshwater zooplankton graze efficiently on cyanobacteria? Hydrobiologia 679: 119–138.

    Google Scholar 

  • Kagami, M., T. Yoshida, T. B. Gurung & J. Urabe, 2002. Direct and indirect effects of zooplankton on algal composition in in situ grazing experiments. Oecologia 133: 356–363.

    PubMed  Google Scholar 

  • Karatayev, A., D. Boltovskoy, D. K. Padilla & L. B. Burlakova, 2007. The invasive bivalves Dreissena polymorpha and Limnoperna fortunei: parallels, contrasts, potential spread and invasion impacts. Journal of Shellfish Research 26: 205–213.

    Google Scholar 

  • Karl, I. & K. Fischer, 2008. Why get big in the cold? Towards a solution to a life-history puzzle. Oecologia 155: 215–225.

    PubMed  Google Scholar 

  • Ke, Z., P. Xie, L. Guo, Y. Liu & H. Yang, 2007. In situ study on the control of toxic Microcystis blooms using phytoplanktivorous fish in the subtropical Lake Taihu of China: a large fish pen experiment. Aquaculture 265: 127–138.

    Google Scholar 

  • Kobayashi, T., P. Gibbs, P. I. Dixon & R. J. Shiel, 1996. Grazing by a river zooplankton community: importance of microzooplankton. Marine and Freshwater Research 47: 1025–1036.

    Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Google Scholar 

  • Lacerot, G., C. Kruk, M. Luerling & M. Scheffer, 2013. The role of subtropical zooplankton as grazers of phytoplankton under different predation levels. Freshwater Biology 58: 494–503.

    Google Scholar 

  • Lazzaro, X., 1987. A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146: 97–167.

    Google Scholar 

  • Lazzaro, X., 1991. Feeding convergence in South American and African zooplanktivorous cichlids Geophagus brasiliensis and Tilupiu rendalli. Environmental Biology of Fishes 31: 283–293.

    Google Scholar 

  • Lazzaro, X., M. Bouvy, R. A. Ribeiro-Filho, V. S. Oliviera, L. T. Sales, Vasconcelos & M. R. Mata, 2003. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshwater Biology 48: 649–668.

    Google Scholar 

  • Lehman, J. T., 1989. Selective herbivory and its role in the evolution of phytoplankton growth strategies. In Sandgren, C. D. (ed), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Leitão, E., K. A. Ger & R. Panosso, 2018. Selective grazing by a tropical copepod (Notodiaptomus iheringi) facilitates microcystis dominance. Frontiers in Microbiology 9: 301.

    PubMed  PubMed Central  Google Scholar 

  • Levine, S. N., M. A. Borchardt, M. Braner & A. Shambaugh, 1999. The impact of zooplankton grazing on phytoplankton species composition and biomass in Lake Champlain (USA-Canada). Journal of Great Lakes Research 25: 61–77.

    Google Scholar 

  • Litchman, E., P. de Tezanos Pinto, C. A. Klausmeier, M. K. Thomas & K. Yoshiyama, 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653: 15–28.

    CAS  Google Scholar 

  • Loiterton, B., M. Sundbom & T. Vrede, 2004. Separating physical and physiological effects of temperature on zooplankton feeding rate. Aquatic Science 66: 123–129.

    Google Scholar 

  • López Fernández, H., K. O. Winemiller, C. Montaña & R. L. Honeycutt, 2012. Diet-morphology correlations in the radiation of South American geophagine cichlids (Perciformes: Cichlidae: Cichlinae). PLoS ONE 7: e33997.

    PubMed  PubMed Central  Google Scholar 

  • López Rodríguez, A., I. Silva, S. de Ávila-Simas, S. Stebniki, R. Bastian, V. M. Massaro, J. País, G. Tesitore, F. Teixeira de Mello, A. D’Anatro, N. Vidal, M. Meerhoff, D. A. Reynalte-Tataje, E. Zaniboni-Filho & I. González-Bergonzoni, 2019. Diets and trophic structure of fish assemblages in a large and unexplored subtropical river: the Uruguay River. Water 11: 1374.

    Google Scholar 

  • Lürling, M., 2021. Grazing resistance in phytoplankton. Hydrobiologia 848: 237–249.

    Google Scholar 

  • Macchi, P. J. & P. H. Vigliano, 2014. Salmonid introduction in Patagonia: the ghost of past, present and future management. Ecología Austral 24: 162–172.

    Google Scholar 

  • Marroni, S., N. Mazzeo, J. P. Pacheco, J. Clemente & C. Iglesias, 2016. Interactions between bivalves and zooplankton: competition or intraguild predation? Implications for biomanipulation in subtropical shallow lakes. Marine and Freshwater Research 68: 1036–1043.

    Google Scholar 

  • McMahon, R. F., 1983. Ecology of an invasive pest Bivalve, Corbicula. The Mollusca 6: 505–561.

    Google Scholar 

  • McQueen, D. J., M. R. S. Johannes, J. R. Post, T. J. Stewart & D. R. S. Lean, 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecological Monographs 59: 289–309.

    Google Scholar 

  • Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377–391.

    Google Scholar 

  • Mehner, T., J. Benndorf, P. Kasprzak & R. Koschel, 2002. Biomanipulation of lake ecosystems: successful applications and expanding complexity in the underlying science. Freshwater Biology 47: 2453–2465.

    Google Scholar 

  • Modenutti, B. E., E. G. Balseiro, C. P. Queimaliños, D. A. Añón Suárez, M. C. Dieguez & R. J. Albariño, 1998. Estructure and dynamics of food webs in andean lakes. Lakes & Reservoirs Research & Management 3: 179–189.

    Google Scholar 

  • Modenutti, B., C. Queimaliños, E. Balseiro & M. Reissig, 2003. Impact of different zooplankton structures on the microbial food web of a South Andean oligotrophic lake. Acta Oecologica-International Journal of Ecology 24: S289–S298.

    Google Scholar 

  • Montgomery, J. C. & R. C. Milton, 1993. Use of the lateral line for feeding in the torrent fish (Cheimarrichthys fosteri). New Zealand Journal of Zoology 20: 121–125.

    Google Scholar 

  • Moriarty, D. J. W., J. P. E. Darlington, I. G. Dunn, C. M. Moriarty & M. P. Tevlin, 1973. Feeding and grazing in Lake George, Uganda. Proceedings of the Royal Society of London, Series B 184: 299–319.

    Google Scholar 

  • Morton, B., 1973. Some aspects of the biology and functional morphology of feeding and digestion of Limnoperna fortunei (Dunker) (Bivalvia: Mytilacea). Malacologia 12: 265–281.

    CAS  PubMed  Google Scholar 

  • Moss, B., 1981. The composition and ecology of periphyton communities in freshwaters, II. Interrelationships between water chemistry, phytoplankton populations and periphyton populations in a shallow lake and associated experimental reservoirs (“lund tubes”). British Physiological Bulletin 16: 59–76.

    Google Scholar 

  • Musin, G., F. Rojas Molina, F. Giri & V. Williner, 2015. Structure and density population of the invasive mollusc Limnoperna fortunei associated with Eichhornia crassipes in lakes of the Middle Paraná floodplain. Journal of Limnology 74: 537–548.

    Google Scholar 

  • Naddafi, R., K. Pettersson & P. Eklov, 2007. The effect of seasonal variation in selective feeding by zebra mussels (Dreissena polymorpha) on phytoplankton community composition. Freshwater Biology 52: 823–842.

    Google Scholar 

  • Nadin-Hurley, C. M. & A. Duncan, 1976. A comparison of daphnid gut particles with the sestonic particles in two Thames Valley reservoirs throughout 1970 and 1971. Freshwater Biology 6: 109–123.

    Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2011. Invited review-fight on plankton! or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogamie Algologie 32: 157–204.

    Google Scholar 

  • Novakowski, G. C., N. Segatti Hahn & R. Fugi, 2008. Diet seasonality and food overlap of the fish assemblage in a pantanal pond. Neotropical Ichthyology 6: 567–576.

    Google Scholar 

  • Novakowski, G. C., F. Cassemiro & N. S. Hahn, 2016. Diet and ecomorphological relationships of four cichlid species from the Cuiabá River basin. Neotropical Ichthyology 14: e150151.

    Google Scholar 

  • Oberhaus, L., G. Malorie, B. Pinel-Alloul, A. Ghadouani & J. F. Humbert, 2007. Grazing of two toxic Planktothrix species by Daphnia pulicaria: potential for bloom control and transfer of microcystins. Journal of Plankton Research 29: 827–838.

    CAS  Google Scholar 

  • Obertegger, U., H. A. Smith, G. Flaim & R. L. Wallace, 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662: 157–162.

    Google Scholar 

  • Okun, N., J. Jandeson Brasil, L. Attayde & I. A. S. Costa, 2008. Omnivory does not prevent trophic cascades in pelagic food webs. Freshwater Biology 53: 129–138.

    Google Scholar 

  • Oliveira, M. D., D. F. Calheiros, C. M. Jacobi & S. K. Hamilton, 2011. Abiotic factors controlling the establishment and abundance of the invasive golden mussel Limnoperna fortunei. Biological Invasions 13: 717–729.

    Google Scholar 

  • Orcutt, J. D. & K. G. Porter, 1983. Diel vertical migration by zooplankton: Constant and fluctuating temperature affects life history parameters of Daphnia. Limnology and Oceanography 28: 720–730.

    Google Scholar 

  • Pace, M. L., S. F. Findlay & D. L. Lints, 1992. Zooplankton in advective environments: the Hudson River community and a comparative analysis. Canadian Journal of Fisheries and Aquatic Sciences 49: 1060–1069.

    Google Scholar 

  • Paerl, H. W., 2017. Controlling harmful cyanobacterial blooms in a climatically more extreme world: management options and research needs. Journal of Plankton Research 39: 763–771.

    Google Scholar 

  • Pančić, M. & T. Kiørboe, 2018. Phytoplankton defense mechanisms: traits and trade-offs. Biological Reviews 93: 1269–1303.

    PubMed  Google Scholar 

  • Panosso, R., P. Carlsson, S. Kozlowsky-Suzuki, M. F. O. Azevedo & E. Granéli, 2003. Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacterial strains. Journal of Plankton Research 25: 1169–1175.

    Google Scholar 

  • Pantel, J. H., C. Duvivier & L. De Meester, 2015. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecology Letters 18: 992–1000.

    PubMed  Google Scholar 

  • Pastorino, G., G. Darrigran, S. M. Martyn & L. Lunaschi, 1993. Limnoperna fortunei (Dunker, 1857) (Mytilidae), nuevo bivalvo invasor en aguas del Río de la Plata. Neotropica 39: 34.

    Google Scholar 

  • Peters, R. H., 1983. The Ecological Implications of Body Size, Cambridge University, Cambridge:

    Google Scholar 

  • Pizzolón, L., N. Santinelli, M. C. Marinone & S. A. Menu-Marque, 1995. Plankton and hydrochemistry of Lake Futalaufquen (Patagonia, Argentina) during the growing season. Hydrobiologia 316: 63–73.

    Google Scholar 

  • Post, J. R. & D. J. McQueen, 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwater Biology 17: 79–89.

    Google Scholar 

  • Pouilly, M., T. Yunoki, C. Rosales & L. Torres, 2004. Trophic structure of fish assemblages from Mamore’ River floodplain lakes (Bolivia). Ecology of Freshwater Fish 13: 245–257.

    Google Scholar 

  • Reissig, M., C. Trochine, C. Queimaliños, E. Balseiro & B. Modenutti, 2006. Impacts of fish introduction on planktonic food webs in lakes of the patagonian plateau. Biological Conservation 132: 437–447.

    Google Scholar 

  • Rejas, D., S. Declerck, J. Auwerken, P. Tak & L. de Meester, 2005. Plankton dynamics in a tropical floodplain lake: fish, nutrients, and the relative importance of bottom-up and top-down control. Freshwater Biology 50: 52–69.

    CAS  Google Scholar 

  • Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory, Ecology Institute, Oldendorf:

    Google Scholar 

  • Reynolds, C. S. & P. C. Descy, 1996. The production, biomass, and structure of phytoplankton in large rivers. Archives Fur Hydrobiologie Supplement 113: 161–187.

    Google Scholar 

  • Rietzler, A. C., T. Matsumura-Tundisi & J. G. Tundisi, 2002. Life cycle, feeding and adaptive strategy implications on the co-occurrence of argyrodiaptomus furcatus and notodiaptomus iheringi in lobo-broa reservoir (sp, brazil). Brazilian Journal of Biology 62: 93–105.

    CAS  Google Scholar 

  • Roff, J. C., J. T. Turner, M. K. Webber & R. R. Hopcroft, 1995. Bacterivory by tropical copepod nauplii: extent and possible significance. Aquatic Microbial Ecology 9: 165–175.

    Google Scholar 

  • Rojas Molina, F., J. C. Paggi & M. Devercelli, 2010. Zooplanktophagy in the natural diet and selectivity of the invasive mollusk Limnoperna fortunei. Biological Invasions 12: 1647–1659.

    Google Scholar 

  • Rondel, C., R. Arfi, D. Corbin, F. Le Bihan, E. H. Ndour & X. Lazzaro, 2008. A cyanobacterial bloom prevents fish trophic cascades. Freshwater Biology 53: 637–651.

    CAS  Google Scholar 

  • Saigo, M., M. R. Marchese & K. M. Wantzen, 2016. Sources contribution for benthic invertebrates: an inter-lake comparison in a flood plain system. Hydrobiologia 770: 27–36.

    CAS  Google Scholar 

  • Salmaso, N., 2002. Ecological patterns of phytoplankton assemblages in Lake Garda: seasonal, spatial and historical features. Journal of Limnology 61: 95–115.

    Google Scholar 

  • Salmaso, N. & J. Padisak, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Google Scholar 

  • Sampaio da Silva, L. H., M. S. Arcifa, G. Salazar-Torres & V. Huszar, 2014. Tilapia rendalli increases phytoplankton biomass of a shallow tropical lake. Acta Limnologica Brasiliensia 26: 429–441.

    Google Scholar 

  • Sarma, S. S. S., S. Nandini & R. D. Gulati, 2005. Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542: 315–333.

    Google Scholar 

  • Sarmiento, G., S. Gaviria, H. Hooghiemstra, J. C. Berrio & R. Van der Hammen, 2008. Landscape evolution and origin of Lake Fúquene (Colombia): tectonics, erosion and sedimentation processes during Pleistocene. Geomorphology 100: 563–575.

    Google Scholar 

  • Saunders, J. F. & W. M. Lewis, 1988a. Dynamics and control mechanisms in a tropical zooplankton community (Lake Valencia, Venezuela). Ecological Monographs 58: 337–353.

    Google Scholar 

  • Saunders, J. F. & W. M. Lewis, 1988b. Zooplankton abundance and transport in a tropical white-water river. Hydrobiologia 162: 147–155.

    Google Scholar 

  • Saunders, A. J. & J. C. Montgomery, 1985. Field and laboratory studies of the feeding behaviour of the piper Hyporhamphus ihi with reference to the role of the lateral line in feeding. Proceeding of the Royal Society of London, Serie B: Biological Sciences 224: 209–221.

    CAS  Google Scholar 

  • Scarabotti, P. A., J. A. López & M. Pouilly, 2011. Flood pulse and the dynamics of fish assemblage structure from neotropical floodplain lakes. Ecology of Freshwater Fish 20: 605–618.

    Google Scholar 

  • Scasso, F., N. Mazzeo, J. Gorga, C. Kruk, G. Lacerot, J. Clemente, D. Fabián & S. Bonilla, 2001. Limnological changes of a sub- tropical shallow hypertrophic lake during its restoration. Two years of whole-lake experiments. Aquatic Conservation: Marine and Freshwater Ecosystems 11: 31–44.

    Google Scholar 

  • Schaffner, L. R., L. Govaert, L. de Meester, S. P. Ellner, E. Fairchild, B. E. Miner, L. E. Rudstam, P. Spaak & N. G. Hairston, 2019. Consumer-resource dynamics is an eco-evolutionary process in a natural plankton community. Nature Ecology and Evolution 3: 1351–1358.

    PubMed  Google Scholar 

  • Schulze, P., 2011. Evidence that fish structure the zooplankton communities of turbid lakes and reservoirs. Freshwater Biology 56: 352–365.

    Google Scholar 

  • Sebastian, P., H. Stibor, S. Berger & S. Dhiel, 2012. Effects of water temperature and mixed layer depth on zooplankton body size. Marine Biology 159: 2431–2440.

    Google Scholar 

  • Servais, P., V. Gosselain, C. Jaquim-Justo, S. Becquevort, J. P. Thomé & J. P. Descy, 2000. Trophic relationships between planktonic microorganisms in the river Meuse (Belgium): a carbon budget. Archiv Für Hydrobiologie 149: 625–653.

    CAS  Google Scholar 

  • Sinistro, R., 2010. Top-down and bottom-up regulation of planktonic communities in a warm temperate wetland. Journal of Plankton Research 32: 109–220.

    Google Scholar 

  • Sinistro, R., M. L. Sánchez, M. C. Marinone & I. Izaguirre, 2007. Experimental study of the zooplankton impact on the trophic structure of the microbial assemblages in a temperate wetland (Argentina). Limnologica 37: 88–99.

    Google Scholar 

  • Slusarczyk, M., 1997. Impact of fish predation on a small bodied cladoceran: limitation or stimulation? Hydrobiologia 342(343): 215–221.

    Google Scholar 

  • Smith, T. E., R. J. Stevenson, N. F. Caraco & J. J. Cole, 1998. Changes in phytoplankton community structure during the zebra mussel (Dreissena polymorpha) invasion of the Hudson River (New York). Journal of Plankton Research 20: 1567–1579.

    Google Scholar 

  • Soares, M. C., M. Lürling & V. L. M. Huszar, 2010. Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae. Journal of Plankton Research 32: 999–1008.

    Google Scholar 

  • Sommer, U., F. Sommer, B. Santer, C. Jamieson, M. Boersma, C. Becker & T. Hansen, 2001. Complementary impact of copepods and cladocerans on phlytoplankton. Ecology Letters 4: 545–550.

    Google Scholar 

  • Sommer, U., F. Sommer, B. Santer, E. Zllner, K. Jrgens, J. Jamieson, M. Boersma & K. Gocke, 2003. Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135: 639–647.

    PubMed  Google Scholar 

  • Søndergaard, M., L. Liboriussen, A. R. Pedersen & E. Jeppesen, 2008. Lake restoration by fish removal: short- and long-term effects in 36 Danish lakes. Ecosystems 11: 1291–1305.

    Google Scholar 

  • Sosnovsky, A., J. J. Rosso & R. Quirós, 2010. Trophic interactions in shallow lakes of the Pampa plain (Argentina) and their effects on water transparency during two cold seasons of contrasting fish abundance. Limnetica 29: 233–246.

    Google Scholar 

  • Sousa, R., A. Novais & D. Strayer, 2014. David Strayer Invasive bivalves in freshwaters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 735: 233–251.

    Google Scholar 

  • Speziale, K. L., S. A. Lambertucci, M. Carrete & J. L. Tella, 2012. Dealing with non-native species: what makes the difference in South America? Biological Invasions 14: 1609–1621.

    Google Scholar 

  • Starling, F. L., 1993. Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Parano Reservoir (Brasilia, Brazil): a mesocosm experiment. Hydrobiologia 257: 143–152.

    Google Scholar 

  • Stich, H. R. & W. Lampert, 1984. Growth and reproduction of migrating and non-migrating Daphnia species under simulated food and temperature conditions of diurnal vertical migration. Oecologia 61: 192–196.

    PubMed  Google Scholar 

  • Sylvester, F., J. Dorado, D. Boltovskoy, A. Juárez & D. Cataldo, 2005. Filtration rates of the invasive pest bivalve Limnoperna fortunei as a function of size and temperature. Hydrobiologia 534: 71–80.

    Google Scholar 

  • Sylvester, F., D. Boltovskoy & D. Cataldo, 2007. Fast response of freshwater consumers to a new trophic resource: predation on the recently introduced Asian bivalve Limnoperna fortunei in the lower Parana River, South America. Austral Ecology 32: 403–415.

    Google Scholar 

  • Van Colen, W., K. Portilla, T. Oña, G. Wyseure, P. Goethalsd, E. Velardeb & K. Muylaert, 2017. Limnology of the neotropical high elevation shallow lake Yahuarcocha (Ecuador) and challenges for managing eutrophication using biomanipulation. Limnologica 67: 37–44.

    Google Scholar 

  • Van Donk, E., M. Lürling, D. O. Hessen & G. M. Lokhorst, 1997. Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers. Limnology and Oceanography 42: 357–364.

    Google Scholar 

  • Van Donk, E., A. Ianora & M. Vos, 2011. Induced defenses in marine and freshwater phytoplankton: a review. Hydrobiologia 668: 3–19.

    Google Scholar 

  • Vareschi, E. & J. Jacobs, 1984. The ecology of Lake Nakuru (Kenya). V. Production of consumer organisms. Oecologia 61: 83–98.

    CAS  PubMed  Google Scholar 

  • Verberk, W. C., D. Atkinson, K. N. Hoefnagel, A. G. Hirst, C. R. Horne & H. Siepel, 2020. Shrinking body sizes in response to warming explanations for the temperature–size rule with special emphasis on the role of oxygen. Biological Reviews. https://doi.org/10.1111/brv.12653.

    Article  PubMed  Google Scholar 

  • Von Rückert, G. & A. Gianni, 2008. Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton? Journal of Plankton Research 10: 1157–1168.

    Google Scholar 

  • Walters, R. J. & M. Hassall, 2006. The temperature-size rule in ectotherms: may a general explanation exist after all? The American Naturalist 167: 510–523.

    PubMed  Google Scholar 

  • Way, C. M., D. J. Hornbach, T. Deneka & R. A. Whitehead, 1989. A description of the ultrastructure of the gills of freshwater bivalves, including a new structure, the frontal cirrus. Canadian Journal of Zoology 67: 357–362.

    Google Scholar 

  • Way, C. M., D. J. Hornbach, C. A. Miller-Way, B. S. Payne & A. C. Miller, 1990. Dynamics of filter feeding in Corbicula fluminea (Bivalvia: Corbiculidae). Canadian Journal of Zoology 68: 115–120.

    Google Scholar 

  • Weetman, D. & D. Atkinson, 2004. Evaluation of alternative hypotheses to explain temperature-induced life history shifts in Daphnia. Journal of Plankton Research 26: 107–116.

    Google Scholar 

  • Wetterer, J. K., 1985. Planktivore Pray Selection: the reactive field model vs. the apparent size model. Ecology 66: 457–464.

    Google Scholar 

  • Wetterer, J. K., 1989. Mechanisms of prey choice by planktivorous fish: perceptual constraints and rules of thumb. Animal Behavior 31: 955–967.

    Google Scholar 

  • Winkel, E. H. T. & C. Davids, 1982. Food selection by Dreissena polimorpha Pallas (Mollusca: Bivalvia). Freshwater Biology 12: 553–558.

    Google Scholar 

  • Zhang, X., P. Xie, L. Hao, N. C. Guo, Y. G. Gon, X. Hu, J. Chen & G. Liang, 2006. Effects of the phytoplanktivorous silver carp (Hypophthalmichthy molitrixon) on plankton and the hepatotoxic microcystins in an enclosure experiment in a eutrophic lake, Lake Shichahai in Beijing. Aquaculture 257: 173–186.

    Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous reviewers who improve the quality of this manuscript with their suggestions and comments. I also want to thank the associate editor assigned for this submission for her favorable manuscript evaluation. P. de Tezanos Pinto kindly revised the grammar style of the initial version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Frau.

Additional information

Handling editor: Judit Padisák

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frau, D. Grazing impacts on phytoplankton in South American water ecosystems: a synthesis. Hydrobiologia 849, 833–860 (2022). https://doi.org/10.1007/s10750-021-04748-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04748-x

Keywords

Navigation