Skip to main content

Advertisement

Log in

Environmental variation in Amazonian interfluves and its effects on local mayfly assemblages

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We assessed how the variation in environmental factors influences mayfly assemblages in conserved streams of different Amazonian interfluves. We hypothesized that environmental variables, mayfly assemblages, and the influence of environmental factors vary among these interfluves, given their distinct evolutionary and ecological histories, and patterns of human interference. We also expected that the effects of environmental variation on species richness and composition would be greater among interfluves than among streams within the same interfluve. Our hypotheses were corroborated, reflecting the considerable heterogeneity of the Amazonian biome, where streams vary naturally among interfluves, determining broad scale divergences in species composition. The environment affected mayfly diversity in different ways among interfluves, reflecting the influence of historical processes that resulted in the formation of centers of endemism delimited by major Amazonian rivers, in which distinct biotic and abiotic factors have prevailed. These regional effects have resulted from the heterogeneity of environmental gradients, which affect mayfly diversity. The results of the present study indicate that, depending on the scale and topography of the interfluve, environmental predictors of the structure of mayfly assemblages vary considerably. This has important implications for the definition of control sites for the assessment and monitoring of environmental quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abílio, F. J. P., A. A. Fonseca-Gessner, T. Watanabe & R. L. Leite, 2005. Fauna de Chironomidae e outros insetos aquáticos de açudes do semi-árido paraibano, Brasil. Entomología y Vectores 12: 255–264.

    Article  Google Scholar 

  • Aleixo, A. & D. F. Rossetti, 2007. Avian gene trees, landscape evolution, and geology: Towards a modern synthesis of Amazonian historical biogeography? Journal of Ornithology 148(Suppl 2): S443–S453.

    Article  Google Scholar 

  • Allan, J. D. & M. M. Castillo, 2007. Stream Ecology, 2nd ed. Springer, The Netherlands.

    Book  Google Scholar 

  • Almeida, C. T., J. F. Oliveira-Junior, R. C. Delgado, P. Cubo & M. C. Ramos, 2017. Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. International Journal of Climatology 37: 2013–2026.

    Article  Google Scholar 

  • Anderson, M. J., 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58: 626–639.

    Article  Google Scholar 

  • Antonelli, A., A. Quijada-Mascareñas, A. J. Crawford, M. Bates, P. M. Velazco & W. Wüster, 2011. Molecular Studies and Phylogeography of Amazonian Tetrapods and their Relation to Geological and Climatic Models. In Hoorn, C. & F. P. Wesselingh (eds), Amazonia: Landscape and Species Evolution: A look into the past. Wiley-Blackwell Publications, United Kingdom: 386–404.

    Chapter  Google Scholar 

  • Azevedo-Ramos, C. & U. Galatti, 2002. Patterns of amphibian diversity in Brazilian Amazonia: Conservation implications. Biological Conservation 103: 103–111.

    Article  Google Scholar 

  • Barros, D. F., A. L. M. Albernaz, J. Zuanon, H. M. V. Espírito Santo, F. P. Mendonça & A. V. Galuch, 2013. Effects of isolation and environmental variables on fish community structure in the Brazilian Amazon Madeira-Purus interfluve. Brazilian Journal of Biology 73: 491–499.

    Article  CAS  Google Scholar 

  • Barthem, R. B., P. Charvet-Almeida, L. F. A. Montag & A. E. Lanna, 2004. Amazon Basin: GIWA Regional assessment 40b. University of Kalmar, Sweden.

    Google Scholar 

  • Beisel, J. N., P. Usseglio-Polatera & J. C. Moreteau, 2000. The spatial heterogeneity of a river bottom: A key factor determining macroinvertebrate communities. Hydrobiologia 422–423: 163–171.

    Article  Google Scholar 

  • Benone, N. L., M. C. Esposito, L. Juen, P. S. Pompeu & L. F. A. Montag, 2017. Regional controle on physical habitat structure of Amazon Streams. River Research and Application 33: 766–776.

    Article  Google Scholar 

  • Brasil, L. S., J. M. Oliveira-Júnior, L. B. Calvão, F. G. Carvalho, C. S. Monteiro-Júnior, K. Dias-Silva & L. Juen, 2018. Spatial, biogeographic and environmental predictors of diversity in Amazonian Zygoptera. Insect Conservation and Diversity 11: 174–184.

    Article  Google Scholar 

  • Brasil, L. S., A. Luiza-Andrade, L. B. Calvão, K. Dias-Silva, A. P. J. Faria, Y. Shimano, J. M. B. Oliveira-Junior, M. N. Cardoso & L. Juen, 2020. Aquatic insects and their environmental predictors: a scientometric study focused on environmental monitoring in lotic environmental. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-020-8147-z.

    Article  PubMed  Google Scholar 

  • Brito, J. G., F. O. Roque, R. T. Martins, N. Hamada, J. L. Nessimian, V. C. Oliveira, R. M. Hughes, F. R. Paula & S. Ferraz, 2020. Small forest losses degrade stream macroinvertebrate assemblages in the eastern Brazilian Amazon. Biology Conservation. https://doi.org/10.1016/j.biocon.2019.108263.

    Article  Google Scholar 

  • Brittain, J. E., 1982. Biology of mayflies. Annual Review of Entomology 27: 119–147.

    Article  Google Scholar 

  • Buss, D. F. & F. F. Salles, 2007. Using Baetidae Species as Biological Indicators of Environmental Degradation in a Brazilian River Basin. Environmental Monitoring and Assessment 130: 365–372.

    Article  CAS  PubMed  Google Scholar 

  • Callisto, M., C. B. M. Alves, J. M. Lopes & M. A. Castro, 2014. Condições ecológicas em bacias hidrográficas de empreendimentos hidrelétricos. CEMIG, Belo Horizonte.

    Google Scholar 

  • Cardoso, M. N., L. B. Calvão, L. F. A. Montag, B. S. L. Godoy & L. Juen, 2018. Reducing the deleterious effects of logging on Ephemeroptera communities through reduced impact management. Hydrobiologia 823: 191–203.Coddington, J. A., C. E. Criswold, D. S. Davila, E. Penaranda & S. F. Larcher, 1991. Designing and Testing Sampling Protocols to Estimate Biodiversity in Tropical Ecosystems. In the Unity of Evolutionary Biology: Proceedings of the Fourth International Congress of Systematic and Evolutionary Biology: 44-60.

  • Cardoso, P., T. L. Erwin, P. V. Borges & T. R. New, 2011. The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation 144: 2647–2655.

    Article  Google Scholar 

  • Coddington, J. A., C. E. Griswold, D. Silva, E. Peñaranda & S. F. Larcher, 1991. Designing and testing sampling protocols to estimate biodiversity in tropical ecosystems. Proceedings of the Fourth International Congress of Systematic and Evolutionary Biology: 44–60.

  • Colwell, R. K. & J. A. Coddington, 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London Series B 345: 101–118.

    Article  CAS  PubMed  Google Scholar 

  • Cortes, R. M., S. Varandas, A. Teixeira, S. J. Hughes, J. B. Magalhaes, J. Barquín, M. Alvarez-Cabria & D. Fernandez, 2011. Effects of landscape metrics and land-use variables on macroinvertebrate communities and habitat characteristics. Limnetica 30: 347–362.

    Article  Google Scholar 

  • Cummins, K. W., R. W. Merritt & P. C. N. Andrade, 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in southeast Brazil. Studies on Neotropical Fauna and Environment 40: 69–89.

    Article  Google Scholar 

  • Dambros, C., G. Zuquim, G. M. Moulatlet, F. R. C. Costa, H. Tuomisto, C. C. Ribas, R. Azevedo, F. Baccaro, P. E. D. Bobrowiec, M. S. Dias, T. Emilio, H. M. V. Espirito-Santo, F. O. G. Figueiredo, E. Franklin, C. Freitas, M. B. Graça, F. d’Horta, R. P. Leitão, M. Maximiano, F. P. Mendonça, J. Menger, J. W. Morais, A. H. N. de Souza, J. L. P. Souza, V. C. Tavares, J. D. Vale, E. M. Venticinque, J. Zuanon & W. E. Magnusson, 2020. The role of environmental filtering, geographic distance and dispersal barriers in shaping the turnover of plant and animal species in Amazonia. Biodiversity and Conservation 29: 3609–3634.

    Article  Google Scholar 

  • Davies, P. E., L. S. J. Cook, P. D. McIntosh & S. A. Munks, 2005. Changes in stream biota along a gradient of logging disturbance, 15 years after logging at Ben Nevis, Tasmania. Forest Ecology and Management 219: 132–148.

    Article  Google Scholar 

  • De Paiva, C. K. S., A. P. J. Faria, L. B. Calvão & L. Juen, 2021. The anthropic gradient determines the taxonomic diversity of aquatic insects in Amazonian streams. Hydrobiologia in Prelo. https://doi.org/10.1007/s10750-021-04515-y.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F., P. De Marco & B. A. Hawkins, 2010. Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conservation Diversity 3: 172–179.

    Google Scholar 

  • Domínguez, E., C. Molineri, M. L. Pescador, M. D. Hubbard & C. Nieto, 2006. Ephemeroptera of South America. Pensoft, Moscow.

    Google Scholar 

  • Espinosa, C. E., Y. Shimano, S. Rolin, L. Maioli, L. Juen & B. Dunk, 2020. Effects of mining and reduced turnover of Ephemeroptera (Insecta) in streams of the Eastern Brazilian Amazon. Journal of Insect Conservation. https://doi.org/10.1007/s10841-020-00275-7.

    Article  Google Scholar 

  • Faria, A. P. J., R. Ligeiro, M. Callisto & L. Juen, 2017. Response of aquatic insect assemblages to the activities of traditional populations of eastern Amazônia. Hydrobiol. 802: 39–51.

    Article  Google Scholar 

  • Firmiano, K. R., M. Cañedo-Argüelles, C. Gutiérrez-Cánovas, D. R. Macedo, M. S. Linares, N. Bonada & M. Callisto, 2020. Land use and local environment affect macroinvertebrate metacommunity organization in neotropical stream networks. J. Biogeogr. https://doi.org/10.1111/jbi.14020.

    Article  Google Scholar 

  • Frainer, A., 2013. Ecosystem functioning in streams: Disentangling the roles of biodiversity, stoichiometry, and anthropogenic drivers. Print and Media, Umeå, Sweden.

    Google Scholar 

  • Haffer, J., 2008. Hypotheses to explain the origin of species in Amazonia. Brazilian Journal of Biology 68: 917–947.

    Article  CAS  Google Scholar 

  • Haseyama, K. L. F. & C. J. B. Carvalho, 2011. Padrões de distribuição da biodiversidade Amazônica: um ponto de vista evolutivo. Revista de Biologia: 35–40.

  • Hastings, A., J. E. Byers, J. A. Crooks, K. Cuddington, C. G. Jones, J. G. Lambrinos, T. S. Talley & W. G. Wilson, 2007. Ecosystem engineering in space and time. Ecology Letters 10: 153–164.

    Article  PubMed  Google Scholar 

  • Heino, J. & H. Mykrä, 2008. Control of stream insect assemblages: Roles of spatial configuration and local environmental factors. Ecological Entomology 33: 614–622.

    Article  Google Scholar 

  • Hershey, A. E., G. A. Lamberti, D. T. Chaloner & R. M. Northington, 2010. Aquatic insect ecology. In Thorp, J. H. & A. P. Covich (eds), Ecology and classification of North American Freshwater Invertebrates. Academic Press (Elsevier), London, UK: 659–694.

    Chapter  Google Scholar 

  • Hoorn, C. & F. P. Wesselingh, 2010. Amazonia: Landscape and Species Evolution, a Look into the Past. Wiley Blackwell Publishing Ltd., Chichester.

    Google Scholar 

  • Hutchinson, G. E., 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.

    Article  Google Scholar 

  • Jacobus, L. M., C. R. Macadam & M. Sartori, 2019. Mayflies (Ephemeroptera) and their contribution to ecosystem services. Insects 10: 170.

    Article  PubMed Central  Google Scholar 

  • Juen, L. & P. Marco, 2012. Dragonfly endemism in the Brazilian Amazon: Competing hypotheses for biogeographical patterns. Biodiversity and Conservation 21: 3507–3521.

    Article  Google Scholar 

  • Juen, L., H. S. R. Cabette & P. De Marco, 2007. Odonate assemblage structure in relation to basin and aquatic habitat structure in Pantanal wetlands. Hydrobiologia 579: 125–134.

    Article  Google Scholar 

  • Juen, L., E. J. Cunha, F. G. Carvalho, M. C. Ferreira, T. O. Begot, A. L. Andrade, Y. Shimano, H. Leão, P. S. Pompeu & L. F. A. Montag, 2016. Effects of oil palm plantations on the habitat structure and biota of streams in Eastern Amazon. River Research and Applications 32: 2081–2094.

    Article  Google Scholar 

  • Krebs, C. J., 1999. Ecological Methodology, 1st ed. Addison Wesley Longman Inc, Menlo Park, CA.

    Google Scholar 

  • Legendre, P. & M. J. Anderson, 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69: 1–24.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd ed. Elservier Science B.V, Ansterdam.

    Google Scholar 

  • Liao, W., S. Venn & J. Niemela, 2020. Environmental determinants of diving beetle assemblages (Coleoptera: Dytiscidae) in an urban landscape. Biodiversity and Conservation 29: 2343–2359.

    Article  Google Scholar 

  • Lomolino, M. V., 2004. Conservation biogeography. In Lomolino, M. V. & R. Lawrence (eds), Heaney Frontiers of Biogeography: New Directions in the Geography of Nature. Sinauer Associates, Massachusetts: 293–296.

    Google Scholar 

  • Luiza-Andrade, A., L. S. Brasil, N. R. Torres, J. Brito, R. R. Silva, L. U. Maioli, M. F. Barbirato, S. G. Rolim & L. Juen, 2020. Effects of local environmental and landscape variables on the taxonomic and trophic composition of aquatic insects in a rare forest formation of the Brazilian Amazon. Neotropical Entomology 49: 821–831.

    Article  CAS  PubMed  Google Scholar 

  • Margalef, R., 1983. Limnologia. Omega, Barcelona.

    Google Scholar 

  • McCabe, D. J., 2010. Rivers and Streams: Life in Flowing Water. Nature Education Knowledge 1(12): 1–14.

    Google Scholar 

  • McGeoch, M. A., 1998. The selection, testing and application of terrestrial insects as bioindicators. Biological Reviews 73: 181–201.

    Article  Google Scholar 

  • Mokany, K. & S. Ferrier, 2011. Predicting impacts of climate change on biodiversity: a role for semi-mechanistic community-level modelling. Diversity and Distribution 17: 374–380.

    Article  Google Scholar 

  • Nogueira, D. S., L. C. Calvão, L. F. A. Montag, L. Juen & P. De Marco Jr., 2016. Little effects of reduced-impact logging on insect communities in eastern Amazonia. Environmental Monitoring and Assessment 188: 441–461.

    Article  PubMed  Google Scholar 

  • Peck, D. V, A. T. Herlihy, B. H. Hill, R. M. Hugles, P. R. Kaufmann, D. J. Klemm, J. M. Lazoechak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee & M. R. Cappaert, 2006. Environmental Monitoring and Assessment Program-Surface Waters Western Pilot Study: Field Operations Manual for Wadeable Streams. EPA/620/R-, 275.

  • Pomara, L. Y., K. Ruokolainen & K. R. Young, 2014. Avian species composition across the Amazon River: The roles of dispersal limitation and environmental heterogeneity. Journal of Biogeography 41: 784–796.

    Article  Google Scholar 

  • R Development Core Team, 2020. R: A language and environment for statistical computing. [online]. Available from: http://www.r-project.org/.

  • Racheli, L. & T. Racheli, 2004. Patterns of Amazonian area relationships based on raw distributions of papilionid butterflies (Lepidoptera: Papilioninae). Biological Journal of the Linnean Society 82: 345–357.

    Article  Google Scholar 

  • Ramezani, J., L. Rennebeck, G. Closs & C. Matthaei, 2014. Effects of fine sediment addition and removal on stream invertebrates and fish: a reach-scale experiment. Freshwater Biology 59: 2584–2604.

    Article  Google Scholar 

  • Ribas, C. C., A. Aleixo, A. C. R. Nogueira, C. Y. Miyaki & J. Cracraft, 2012. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proceedings of the Royal Society B: Biological Sciences 279: 681–689.

    Article  PubMed  Google Scholar 

  • Salles, F. F., 2006. A ordem Ephemeroptera no Brasil (Insecta): Taxonomia e Diversidade. Universidade Federal de Viçosa.

  • Sartori, M. & J. E. Brittain, 2015. Order Ephemeroptera. In Thorp J. H. & D. C. Rogers (eds), Ecology and General Biology: Thorp and Covich’s Freshwater Invertebrates, Elservier: 873–891.

  • Shimano, Y. & L. Juen, 2016. How oil palm cultivation is affecting mayfly assemblages in Amazon streams. Annales de Limnologie 52: 35–45.

    Article  Google Scholar 

  • Shimano, Y., H. S. R. Cabette, F. F. Salles & L. Juen, 2010. Composição e distribuição da fauna de Ephemeroptera (Insecta) em área de transição Cerrado-Amazônia, Brasil. Iheringia Série Zoologia 100: 301–308.

    Article  Google Scholar 

  • Shimano, Y., L. Juen, F. F. Salles, D. S. Nogueira & H. S. R. Cabette, 2013. Environmental and spatial processes determining Ephemeroptera (Insecta) structures in tropical streams. Annales de Limnologie - International Journal of Limnology 49: 31–41.

    Article  Google Scholar 

  • Shimano, Y., M. Cardoso & L. Juen, 2018. Ecological studies of mayflies (Insecta, Ephemeroptera): Can sampling effort be reduced without losing essential taxonomic and ecological information? Acta Amazonica 48: 137–145.

    Article  Google Scholar 

  • Silva, J. M. C. & D. C. Oren, 1996. Application of parsimony analysis of endemicity in Amazonian biogeography: an example with primates. Biological Journal of the Linnean Society 59: 427–437.

    Article  Google Scholar 

  • Silva, J. M. C., A. B. Rylands & G. A. B. Fonseca, 2005. The fate of Amazonian areas of endemism. Conservation Biology 19: 689–694.

    Article  Google Scholar 

  • Silveira, M. P., 2004. Aplicação do Biomonitoramento para Avaliação da Qualidade da Água em Rios. Embrapa Meio Ambiente, Jaguariúna.

    Google Scholar 

  • Sioli, H., 1984. Introduction: history of the discovery of the Amazon and of research of Amazonian waters and landscapes. In Sioli, H. (ed.), The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. W. Junk Publishers, Dordrecht: 1–13.

    Chapter  Google Scholar 

  • Smith, T. W. & J. T. Lundholm, 2010. Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33: 648–655.

    Article  Google Scholar 

  • Snelder, T. H. & B. J. F. Biggs, 2002. Multiscale river environment classification for water resources management. Journal of the American Water Resources Association 38: 1225–1239.

    Article  Google Scholar 

  • Souza, H. M. L., 2010. Diversidade beta de Baetidae (Ephemeroptera) em córregos da bacia hidrográfica do rio Pindaíba (MT). In Santos, J. E. & C. Galbiati (eds), Gestão e Educação Ambiental: Água, Biodiversidade e Cultura. RiMa, Cuiabá: 109–123.

    Google Scholar 

  • Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson & R. H. Norris, 2006. Setting expectations for the ecological condition of streams: the concept of refernce condition. Ecological Applications 16: 1267–1276.

    Article  PubMed  Google Scholar 

  • Strahler, A., 1957. Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union 38: 913–920.

    Article  Google Scholar 

  • Szymańska, M., P. Burandt, M. Bąkowska, P. Sowiński, N. Mrozińska & K. Obolewski, 2020. Long-term effects of hydromorphological stream restoration on changes in microhabitats of Ephemera danica (Ephemeroptera) and its population. Ecological Indicators 109:

    Article  Google Scholar 

  • Thorp, J. H. & A. P. Covich, 2010. Ecology and Classification of North American Freshwater Invertebrates. Academic Press (Elsevier), London, UK.

    Google Scholar 

  • Vilenica, M., A. Brigić, M. Sartori & Z. Mihaljević, 2018. Microhabitat selection and distribution of functional feeding groups of mayfly larvae (Ephemeroptera) in lotic karst habitats. Knowledge and Management of Aquatic Ecosystems. 419: 17. https://doi.org/10.1051/kmae/2018011.

    Article  Google Scholar 

  • Vilenica, M., M. Kerovec, I. Pozojević & Z. Mihaljević, 2020. Mayfly response to different stress types in small and mid-sized lowland rivers. ZooKeys 980: 57–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinson, M. R. & C. P. Hawkins, 1998. Biodiversity of stream insects: variation at local, basin, and regional scales. Annual Review of Entomology 43: 271–293.

    Article  CAS  PubMed  Google Scholar 

  • Voelz, N. J. & J. V. McArthur, 2000. An exploration of factors influencing lotic insect species richness. Biodiversity and Conservation 9: 1543–1570.

    Article  Google Scholar 

  • Wallace, A. R., 1852. On the monkeys of the Amazon. Proceedings of the Zoological Society of London 14: 451–454.

    Google Scholar 

  • Wesselingh, F. P., C. Hoorn, S. B. Kroonenberg, A. Antonelli, J. G. Lundberg, H. B. Vonhof & H. Hooghiemstra, 2010. On the origin of Amazonian landscapes and biodiversity: a synthesis. In Hoorn, C. & F. P. Wesselingh (eds), Amazonia: Landscape and Species Evolution: A look into the past. Wiley-Blackwell Publications, United Kingdom: 419–431.

    Google Scholar 

  • Zapala, M. A. & N. J. Schork, 2006. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proceedings of the National Academy of Sciences 103: 19430–19435.

    Article  CAS  Google Scholar 

  • Zapala, M. A. & N. J. Schork, 2012. Statistical properties of multivariate distance matrix regression for high-dimensional data analysis. Frontiers in Genetics 3: 1–10.

    Article  Google Scholar 

  • Zar, J. H., 2010. Biostatistical analysis, 5th ed. Prentice-Hall, New Jersey.

    Google Scholar 

Download references

Acknowledgements

We would like to thank all the members of the Laboratory of Ecology and Conservation (LabECo) at the Federal University of Pará (UFPA) for assisting with fieldwork. We are also grateful to the National Research Council (CNPq) for financing projects 481015/2011-6 - Universal 14/2011 and 475611/2012-8, and granting a productivity scholarship to LJ (process: 304710/2019-9). We would also like to thank the Coordination for Higher Education Personnel Training (CAPES), through PROCAD-AMAZONIA/CAPES, for funding the senior internship of LJ at the University of Florida (process 88881.474457/2020-01). We are also grateful to the Research Program in the Biodiversity of Eastern Amazonia (PPBio) and the Pará State Foundation for Amazonian Research (FAPESPA; ICAAF 03/2011) for their financial support. Finally, we thank the UFPA Research and Graduate Studies Faculty (PROPESP) for funding the revision of the manuscript by Dr. Stephen Ferrari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulie Shimano.

Additional information

Handling editor: Marcelo S. Moretti

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimano, Y., Nogueira, D.S. & Juen, L. Environmental variation in Amazonian interfluves and its effects on local mayfly assemblages. Hydrobiologia 848, 4075–4092 (2021). https://doi.org/10.1007/s10750-021-04626-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04626-6

Keywords

Navigation