Skip to main content
Log in

The drifting dinoflagellate Ceratium furcoides (Levander) Langhans 1925: fundamental niche shift during global invasion

  • INVASIVE SPECIES III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Ceratium furcoides is a freshwater dinoflagellate originally from cold waters of northern Europe that has been expanding its distribution into new areas worldwide. Species distribution modeling (SDM) based on maximum entropy algorithm (MaxEnt) showed that C. furcoides has a much wider potential range than its current distribution and isothermality as the key environmental variable determining its spatial pattern. The model successfully predicts areas of introduction and the climate matching approach has identified mainly tropical and some subtropical regions as most vulnerable areas at risk of introduction and establishment of C. furcoides. Furthermore, the observed shift of the climatic niche occurred between native and non-native ranges, providing, for the first time, a robust evidence that a dinoflagellate can occupy climatically distinct niche spaces following its introduction into new areas. This is probably mirroring the lack of adequate management to deal with various impacts on drainage basins, such as ongoing accelerated cultural eutrophication coupled with river impoundments and water diversion. Thus, this framework provides helpful insights on how to optimize our ability to anticipate invasions and to avoid ecosystem services losses, as well as future studies prospects on adaptive mechanisms of this pervasive invader.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2: a
Fig. 3: a

Similar content being viewed by others

References

  • Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. C. Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. López, R. E. Reis, J. G. Lundberg, M. H. Sabaj Pérez & P. Petry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58: 403–414.

    Google Scholar 

  • Accattatis, V., C. Piccini, P. Huber, S. Metz, E. Rueda & M. Devercelli, 2020. Identifying invaders: the case of Ceratium furcoides (Gonyaulacales, Dinophyceae) in South America. Journal of Phycology. https://doi.org/10.1111/jpy.13015.

    Article  PubMed  Google Scholar 

  • Almeida, C. R., F. B. Spiandorello, D. Giroldo & J. S. Yunes, 2016. The effectiveness of conventional water treatment in removing Ceratium furcoides (Levander) Langhans, Microcystis sp. and microcystins. Water SA 42: 606–611.

    Google Scholar 

  • Alpert, P., E. Bone & C. Holzapfel, 2000. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in Plant Ecology Evolution and Systematics 3: 52–66.

    Google Scholar 

  • Anderson, R. P., 2012. Harnessing the world’s biodiversity data: promise and peril in ecological niche modelling of species distributions. Annals of the New York Academy of Sciences 1260: 66–80.

    PubMed  Google Scholar 

  • Arim, M., S. R. Abades, P. E. Neill, M. Lima & P. A. Marquet, 2006. Spread dynamics of invasive species. Proceedings of the National Academy of Sciences of the United States of America 103: 374–378.

    CAS  PubMed  Google Scholar 

  • Barbet-Massin, M., Q. Rome, C. Villemant & F. Courchamp, 2018. Can species distribution models really predict the expansion of invasive species? PLoS ONE 13: e0193085.

    PubMed  PubMed Central  Google Scholar 

  • Broennimann, O. & A. Guisan, 2008. Predicting current and future biological invasions: both native and invaded ranges matter. Biology Letters 4: 585–589.

    PubMed  PubMed Central  Google Scholar 

  • Broennimann, O., U. A. Treier, H. Müller-Schärer, W. Thuiller, A. T. Peterson & A. Guisan, 2007. Evidence of climatic niche shift during biological invasion. Ecology Letters 10: 701–709.

    CAS  PubMed  Google Scholar 

  • Bustamante-Gil, C., J. J. Ramírez-Restrepo, A. Boltovskoy & A. Vallejo, 2012. Spatial and temporal change characterization of Ceratium furcoides (Dinophyta) in the equatorial reservoir Riogrande II, Colombia. Acta Limnologica Brasiliensia 24: 207–219.

    Google Scholar 

  • Calado, A. J. & J. Larsen, 1997. On the identity of the type species of the genus Ceratium Schrank (Dinophyceae), with notes on C. hirundinella. Phycologia 36: 500–505.

    Google Scholar 

  • Cassie, V., 1978. Seasonal changes in phytoplankton densities in four north island lakes, 1973–74. New Zealand Journal of Marine and Freshwater Research 12: 153–166.

    Google Scholar 

  • Cavalcante, K. P., J. C. Zanotelli, C. C. Müller, K. D. Scherer, J. K. Frizzo, T. A. V. Ludwig & L. S. Cardoso, 2013. First record of expansive Ceratium Schrank, 1793 species (Dinophyceae) in Southern Brazil, with notes on their dispersive patterns in Brazilian environments. Check List 9: 862–866.

    Google Scholar 

  • Cavalcante, K. P., L. S. Cardoso, R. Sussella & V. Becker, 2016. Towards a comprehension of Ceratium (Dinophyceae) invasion in Brazilian freshwaters: autecology of C. furcoides in subtropical reservoirs. Hydrobiologia 771: 265–280.

    CAS  Google Scholar 

  • Colautti, R. I. & S. C. H. Barrett, 2013. Rapid adaptation to climate facilitates range expansion of an invasive plant. Science 342: 364–366.

    CAS  PubMed  Google Scholar 

  • Crossetti, L. O., D. D. C. Bicudo, L. M. Bini, R. B. Dala-Corte, C. Ferragut & C. E. de Mattos Bicudo, 2018. Phytoplankton species interactions and invasion by Ceratium furcoides are influenced by extreme drought and water-hyacinth removal in a shallow tropical reservoir. Hydrobiologia 831: 71–85.

    Google Scholar 

  • D’Antonio, C. & L. A. Meyerson, 2002. Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restoration Ecology 10: 703–713.

    Google Scholar 

  • Dellinger, A. S., F. Essl, D. Hojsgaard, B. Kirchheimer, S. Klatt, W. Dawson, J. Pergl, P. Pysek, M. van Kleunen, E. Weber, M. Winter, E. Hörandl & S. Dullinger, 2016. Niche dynamics of alien species do not differ among sexual and apomictic flowering plants. New Phytologist 209: 1313–1323.

    Google Scholar 

  • Dietz, H. & P. J. Edwards, 2006. Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87: 1359–1367.

    PubMed  Google Scholar 

  • Earth Resources Observation and Science Center/U.S. Geological Survey/U.S. Department of the Interior, 1997. USGS 30 ARC-second Global Elevation Data, GTOPO30. Computational and information systems laboratory: research data archive at the National Center for Atmospheric Research. Accessed January 2020.

  • El-Otify, A. M., H. M. Shafik & E. Szoke, 2003. Analyses of physico-chemical characteristics and phytoplankton communities of Lake Nasser during the last two decades. Acta Botanica Hungarica 45: 75–100.

    CAS  Google Scholar 

  • Fick, S. E. & R. J. Hijmans, 2017. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315.

    Google Scholar 

  • Gallagher, R. V., L. J. Beaumont, L. Hughes & M. R. Leishman, 2010. Evidence for climatic niche and biomeshifts between native and novel ranges in plant species introduced to Australia. Journal of Ecology 98: 790–799.

    Google Scholar 

  • González-Moreno, P., J. Pino, A. Cózar, J. García-de-Lomas & M. Vilà, 2017. The effects of landscape history and time-lags on plant invasion in Mediterranean coastal habitats. Biological Invasions 19: 549–561.

    Google Scholar 

  • Guisan, A., B. Petitpierre, O. Broennimann, C. Daehler & C. Kueffer, 2014. Unifying niche shift studies: insights from biological invasions. Trends in Ecology and Evolution 29: 260–269.

    PubMed  Google Scholar 

  • Haochen, T., W. Yuanyuan, L. Shuyin, Z. Qi, L. Guoxiang & L. Benwen, 2020. A newly recorded species of freshwater blooming dinoflagellates from China and its ecological risks. Journal of Lake Sciences 32: 784–792.

    Google Scholar 

  • Heaney, S. I., J. W. G. Lund, H. M. Canter & K. Gray, 1988. Population dynamics of Ceratium spp. in three English lakes, 1945-1985. Hydrobiologia 161: 133–148.

    CAS  Google Scholar 

  • Hickel, B., 1988. Sexual reproduction and life cycle of Ceratium furcoides (Dinophyceae) in situ in the lake Plußsee (F.R.). Hydrobiologia 161: 41–48.

    Google Scholar 

  • Hutchinson, G. E., 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.

    Google Scholar 

  • Jati, S., L. C. Rodrigues, J. C. Bortolini, A. C. M. Paula, G. A. Moresco, L. M. Reis, B. F. Zanco & S. Train, 2014. First record of the occurrence of Ceratium furcoides (Levander) Langhans (Dinophyceae) in the Upper Paraná River Floodplain (PR/MS), Brazil. Brazilian Journal of Biology 74: 235–236.

    Google Scholar 

  • Jiménez-Valverde, A., A. T. Peterson, J. Soberón, J. M. Overton, P. Aragón & J. M. Lobo, 2011. Use of niche models in invasive species risk assessments. Biological Invasions 13: 2785–2797.

    Google Scholar 

  • Kappes, H., C. Mechenich & U. Sinsch, 2000. Long-term dynamics of Asplanchna priodonta in Lake Windsborn with comments on the diet. Hydrobiologia 432: 91–100.

    Google Scholar 

  • Lambdon, P. W., P. Pyšek, C. Basnou, M. Hejda, M. Arianoutsou, F. Essl, V. Jarošík, J. Pergl, M. Winter, P. Anastasiu, P. Andriopoulos, I. Bazos, G. Brundu, L. Celesti-Grapow, P. Chassot, P. Delipetrou, M. Josefsson, S. Kark, S. Klotz, Y. Kokkoris, I. Kühn, H. Marchante, I. Perglová, J. Pino, M. Vilà, A. Zikos, D. B. Roy & P. E. Hulme, 2008. Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80: 101–149.

    Google Scholar 

  • Langhans, V. H., 1925. Gemischte populationen von Ceratium hirundella (O.F.M) schrank und ihre Deutung. Archiv für Protistenkunde 52: 585–602.

    Google Scholar 

  • Lauzeral, C., F. Leprieur, O. Beauchard, Q. Duron, T. Oberdorff & S. Brosse, 2010. Identifying climatic niche shifts using coarse-grained occurrence data: a test with non-native freshwater fish. Global Ecology and Biogeography 20: 407–414.

    Google Scholar 

  • Levander, K. M., 1894. Materialien zur Kenntnis der Wasserfauna in der Umgebung Helsingfors, mit besonderer Berücksichtigung der Meeresfauna. I: Protozoa. Acta Societatis pro Fauna et Flora Fennica 12: 1–155.

    Google Scholar 

  • Li, X. M., D. Y. She, D. Y. Zhang & W. J. Liao, 2015. Life history differentiation and local adaptation in invasive populations of Ambrosia artemisiifolia in China. Oecologia 177: 669–677.

    PubMed  Google Scholar 

  • Linders, T. E. W., U. Schaffner, R. Eschen, A. Abebe, S. K. Choge, L. Nigatu, P. R. Mbaabu, H. Shiferaw & E. Allan, 2019. Direct and indirect effects of invasive species: biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. Journal of Ecology 107: 2660–2672.

    Google Scholar 

  • Lindström, K., 1992. Ceratium in Lake Erken: vertical distribution, migration and form variation. Nordic Journal of Botany 12: 541–556.

    Google Scholar 

  • López, J. L. B., C. E. E. Estrada, U. R. Méndez, J. J. S. Rodríguez, I. G. M. Goyenechea & J. M. Castillo Cerón, 2017. Evidence of niche shift and invasion potential of Lithobates catesbeianus in the habitat of Mexican endemic frogs. PLoS ONE 12: e0185086.

    Google Scholar 

  • Macêdo, R. L., A. C. S. Franco, R. F. Corrêa, K. do N. Costa, L. G. Pereira, F. D. M. de Oliveira, G. Klippel, B. D. Cordeiro, M. G. R. Thiago, M. I. A. Rocha, V. L. M. Huszar, L. N dos Santos & C. W. C. Branco, 2021. Spreading of the invasive dinoflagellate Ceratium furcoides (Levander) Langhans across Paraiba do Sul ecoregion, South America, Brazil. Limnetica. https://doi.org/10.23818/limn.40.16

  • Mainali, K. P., D. L. Warren, K. Dhileepan, A. McConnachie, L. Strathie, G. Hassan, D. Karki, B. B. Shrestha & C. Parmesan, 2015. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Global Change Biology 21: 4464–4480.

    PubMed  Google Scholar 

  • Marmion, M., M. Parviainen, M. Luoto, R. K. Heikkinen & W. Thuiller, 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15: 59–69.

    Google Scholar 

  • Matsumura-Tundisi, T., J. G. Tundisi, A. P. Luzia & R. M. Degani, 2010. Occurrence of Ceratium furcoides (Levander) Langhans 1925 bloom at the Billings Reservoir, São Paulo State, Brazil. Brazilian Journal of Biology 70: 825–829.

    CAS  Google Scholar 

  • McDowell, W. G. & J. E. Byers, 2019. High abundance of an invasive species gives it an outsized ecological role. Freshwater Biology 64: 577–586.

    Google Scholar 

  • McGeoch, M. A., S. H. M. Butchart, D. Spear, E. Marais, E. J. Kleynhans, A. Symes, J. Chanson & M. Hoffmann, 2010. Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Diversity and Distributions 16: 95–108.

    Google Scholar 

  • Medley, K. A., 2010. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecology and Biogeography 19: 122–133.

    Google Scholar 

  • Meichtry-de-Zaburlín, N., A. Boltovskoy, C. C. Rojas & R. M. Rodriguez, 2014. Primer registro del dinoflagelado invasor Ceratium furcoides (Levander) Langhans 1925 en la Argentina y su distribución en el área de influencia del Embalse Yacyretá (río Paraná, Argentina-Paraguay). Limnetica 33: 153–160.

    Google Scholar 

  • Meichtry-de-Zaburlín, N., R. E. Vogler, M. J. Molina & V. M. Llano, 2016. Potential distribution of the invasive freshwater dinoflagellate Ceratium furcoides (Levander) Langhans (Dinophyta) in South America. Journal of Phycology 52: 200–208.

    PubMed  Google Scholar 

  • Morales, E. A., 2016. Floración de Ceratium furcoides (Levander) Langhans (Dinoflagellata, Dinophyceae) en la represa de La Angostura, Cochabamba, Bolivia A bloom of Ceratium furcoides (Levander) Langhans (Dinoflagellata, Dinophyceae) in La Angostura reservoir, Cochabamba Bolivia. Acta Nova 7: 389–398.

    Google Scholar 

  • Moreira, R. A., O. Rocha, R. M. Santos, R. Laudares-Silva, E. S. Dias & E. M. Eskinazi-Sant’Anna, 2015. First record of Ceratium furcoides (Dinophyta), an invasive species, in a temporary high-altitude lake in the Iron Quadrangle (MG, Southeast Brazil). Brazilian Journal of Biology 75: 98–103.

    CAS  Google Scholar 

  • Moreno-Ostos, E., L. Cruz-Pizarro, A. Basanta & D. Glen George, 2008. The spatial distribution of different phytoplankton functional groups in a Mediterranean reservoir. Aquatic Ecology 42: 115–128.

    CAS  Google Scholar 

  • Nishimura, P. Y., M. Pompêo & V. Moschini-Carlos, 2015. Invasive dinoflagellate Ceratium furcoides (Levander) Langhans in two linked tropical reservoirs. In Pompêo, M., V. Moschini-Carlos, P. Y. Nishimura, S. Cardoso da Silva & J. C. L. Doval(eds), Ecologia de reservatórios e interfaces. Instituto de Biociências da Universidade de São Paulo, São Paulo: 132–142

  • Nicholls, W., K. H. Kennedy & C. A. Hammett, 1980. fish-kill in Heart Lake, Ontario, associated with the collapse of a massive population of Ceratium hirundinella (Dinophyceae). Freshwater Biology 10(6): 553–561.

    Google Scholar 

  • Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptative cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiology 107: 563–593.

    Google Scholar 

  • Padisák, J., G. Vasas & G. Borics, 2016. Phycogeography of freshwater phytoplankton: traditional knowledge and new molecular tools. Hydrobiologia 764: 3–27.

    Google Scholar 

  • Pandeirada, M. S., S. C. Craveiro & A. J. Calado, 2013. Freshwater dinoflagellates in Portugal (W Iberia): a critical checklist and new observations. Nova Hedwigia 97: 321–348.

    Google Scholar 

  • Pappas, J. L. & E. F. Stoermer, 1996. Quantitative method for determining a representative algal sample count. Journal of Phycology 32: 693–696. https://doi.org/10.1111/j.0022-3646.1996.00693.x.

    Article  Google Scholar 

  • Pearman, P. B., A. Guisan, O. Broennimann & C. F. Randin, 2008. Niche dynamics in space and time. Trends in Ecology and Evolution 23: 149–158.

    PubMed  Google Scholar 

  • Peterson, A. T., 2003. Predicting the geography of specie’s invasions via ecological niche modeling. Quarterly Review of Biology 78: 419–433.

    Google Scholar 

  • Peterson, A. T., J. Soberón, R. G. Pearson, R. P. Anderson, E. Martínez-Meyer, M. Nakamura & M. B. Araújo, 2011. Ecological niches and geographic distributions. Princeton University Press, Princeton.

    Google Scholar 

  • Pettitt-Wade, H., K. W. Wellband, D. D. Heath & A. T. Fisk, 2015. Niche plasticity in invasive fishes in the Great Lakes. Biological Invasions 17: 2565–2580.

    Google Scholar 

  • Phillips, S. J., M. Dudik & R. E. Schapire, 2004. A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning. https://doi.org/10.1145/1015330.1015412.

    Article  Google Scholar 

  • Pociecha, A. & E. Wilk-Woźniak, 2008. Comments on the diet of Asplanchna priodonta (Gosse, 1850) in the Dobczycki dam reservoir on the basis of field sample observations. Oceanological and Hydrobiological Studies 37: 63–69.

    Google Scholar 

  • Pollingher, U., 1988. Freshwater armored dinoflagellates: growth, reproduction strategies, and population dynamics. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, New York: 134–174.

    Google Scholar 

  • Rahel, F. J., 2007. Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshwater Biology 52: 696–710.

    Google Scholar 

  • Ramírez-R, J. J., F. L. Gutiérrez & A. Vargas, 2005. Respuesta de la comunidad fitoplanctónica a experimentos de eutrofización artificial realizados en la represa La Fe, el Retiro, Antioquia, Colombia. Caldasia 27: 103–115.

    Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Roriz, P. R. C., B. D. Batista & B. M. Fonseca, 2019. Primeiro registro da espécie invasora Ceratium furcoides (Levander) langhans 1925 (Dinophyceae) no Lago Paranoá, Distrito Federal. Oecologia Australis 23: 1–32.

    Google Scholar 

  • Santos-Wisniewski, M. J., L. C. Silva, I. C. Leone, R. Laudares-Silva & O. Rocha, 2007. First record of the occurrence of Ceratium furcoides (Levander) Langhans 1925, an invasive species in the hydroelectricity power plant Furnas Reservoir, MG, Brazil. Brazilian Journal of Biology 67: 791–793.

    CAS  Google Scholar 

  • Silva, W. J., I. D. S. Nogueira, E. M. de Melo-Magalhães, S. H. M. Benício, S. M. Pessoa & M. Menezes, 2018. Expansion of invasive Ceratium furcoides (Dinophyta) toward north-central Brazil: new records in tropical environments. Acta Limnologica Brasiliensia 30: e210.

    Google Scholar 

  • Simberloff, D., 1996. Impacts of introduced species in the United States. Consequences 2: 13–22.

    Google Scholar 

  • Sousa, D. R. F., A. V. Palaoro, L. M. A. Elmoor-Loureiro & A. A. Kotov, 2017. Predicting the invasive potential of the cladoceran Daphnia lumholtzi Sars, 1885 (Crustacea: Cladocera: Daphniidae) in the Neotropics: are generalists threatened and relicts protected by their life-history traits? Journal of limnology 76: 272–280.

    Google Scholar 

  • Strayer, D. L. & D. Dudgeon, 2010. Freshwater biodiversity conservation: recent progress and future challenges. Freshwater Science 29: 344–358.

    Google Scholar 

  • Strayer, D. L., N. F. Caraco, J. J. Cole, S. Findlay & M. L. Pace, 1999. Transformation of freshwater ecosystems by bivalves: a case study of zebra mussels in the Hudson River. BioScience 49: 19–27.

    Google Scholar 

  • Tafas, T. & A. Economou-Amilli, 1997. Limnological survey of the warm monomictic lake Trichonis (central west-erngreece). Hydrobiologia 344: 141–153.

    CAS  Google Scholar 

  • Tingley, R., M. B. Thompson, S. Hartley & D. G. Chapple, 2015. Patterns of niche filling and expansion across the invaded ranges of an Australian lizard. Ecography 39: 270–280.

    Google Scholar 

  • Vandekerkhove, J., A. C. Cardoso & P. J. Boon, 2013. Is there a need for a more explicit accounting of invasive alien species under the Water Framework Directive? Management of Biological Invasions 4: 25–36.

    Google Scholar 

  • Van Ginkel, C. E., B. C. Hohls & E. Vermaak, 2001. A Ceratium hirundinella (O.F. Müller) bloom in Hartbeespoort Dam. South Africa. Water SA 27: 269–276.

    Google Scholar 

  • Walsh, J. R., R. C. Lathrop & M. J. Vander Zanden, 2016. Invasive invertebrate predator, Bythotrephes longimanus, reverses trophic cascade in a north-temperate lake. Limnology and Oceanography 62: 2498–2509.

    Google Scholar 

  • Warren, D. L., R. E. Glor & M. Turelli, 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 2868–2883.

    PubMed  Google Scholar 

  • Webber, B. L., D. C. Le Maitre & D. J. Kriticos, 2012. Comments on ‘‘Climatic niche shifts are rare among terrestrial plant invaders’’. Science 338: 193.

    CAS  PubMed  Google Scholar 

  • Wiens, J. J. & C. H. Graham, 2005. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36: 519–539.

    Google Scholar 

Download references

Acknowledgement

This study was funded partially by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) Master scholarship to RLM; Finance Code 001. Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (research Grant to LNS, E-26/202.755/2018) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (research Grant to LNS, ref. 314379/2018-5). The authors would like to thank the Graduate Courses in Neotropical Biodiversity (PPGBIO-UNIRIO) and Zoology (PGZOO-UFMG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Lacerda Macêdo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Katya E. Kovalenko, Fernando M. Pelicice, Lee B. Kats, Jonne Kotta & Sidinei M. Thomaz / Aquatic Invasive Species III

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary information 1 (DOCX 1755 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macêdo, R.L., Russo, P., Corrêa, R.F. et al. The drifting dinoflagellate Ceratium furcoides (Levander) Langhans 1925: fundamental niche shift during global invasion. Hydrobiologia 848, 2105–2117 (2021). https://doi.org/10.1007/s10750-020-04495-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04495-5

Keywords

Navigation