Skip to main content

Advertisement

Log in

Latitudinal shifts in mangrove species worldwide: evidence from historical occurrence records

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Consequences of global climate change on mangrove habitats are ambiguous owing to multifaceted factors. In this study, we examined historical occurrences of ten common mangrove species and quantified the rate of latitudinal shift as a possible response to climate change. The Global Biodiversity Information Facility (GBIF) was used to gather occurrence of mangrove species. We found that nine of ten species have been shifting poleward since the 1950s. Overall mean latitudinal shift rates of mangrove species were significantly higher in Australia than in North America (1.7 and 1.3 latitude degrees per decade, respectively). In Australia, mean temperature and precipitation of localities decreased as mangrove species shifted towards drier regions at higher latitudes. However, in North America and West Africa, mean temperature of localities seems relatively stable, whereas precipitation slightly decreased. We provide new quantitative information on shifts in occurrence of common mangrove species worldwide under a changing climate. We confirm the poleward movement of mangrove species over the past 70 years and suggest that local mean temperature and precipitation can act as key drivers of mangrove range shifts. We also advise that poleward latitudinal shifts in mangrove species should be taken into account when establishing new nature reserves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alongi, D. M., 2015. The impact of climate change on mangrove forests. Current Climate Change Reports 1: 30–39.

    Google Scholar 

  • Beck, J., M. Böller, A. Erhardt & W. Schwanghart, 2014. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecological Informatics 19: 10–15.

    Google Scholar 

  • Catling, P. M. & M. J. Oldham, 2011. Recent expansion of Spiranthes cernua (Orchidaceae) into Northern Ontario due to climate change? The Canadian Field-Naturalist 125: 34–40.

    Google Scholar 

  • Cavanaugh, K. C., J. R. Kellner, A. J. Forde, D. S. Gruner, J. D. Parker, W. Rodriguez & I. C. Feller, 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences 111: 723–727.

    CAS  Google Scholar 

  • Cavanaugh, K. C., E. M. Dangremond, C. L. Doughty, A. P. Williams, J. D. Parker, M. A. Hayes, et al., 2019. Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Proceedings of the National Academy of Sciences 116: 21602–21608.

    CAS  Google Scholar 

  • Chen, L., W. Wang, Q. Q. Li, Y. Zhang, S. Yang, M. J. Osland, J. Huang & C. Peng, 2017. Mangrove species’ responses to winter air temperature extremes in China. Ecosphere 8: e01865.

    Google Scholar 

  • Clarke, P. J., R. A. Kerrigan & C. J. Westphal, 2001. Dispersal potential and early growth in 14 tropical mangroves: do early life history traits correlate with patterns of adult distribution? Journal of Ecology 89: 648–659.

    Google Scholar 

  • Coldren, G. A., J. A. Langley, I. C. Feller & S. K. Chapman, 2019. Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. Journal of Ecology 107: 79–90.

    Google Scholar 

  • Collins, D., 2000. Annual temperature summary: Australia records warmest decade. Climate Change Newsletter 12.

  • Cook-Patton, S. C., M. Lehmann & J. D. Parker, 2015. Convergence of three mangrove species towards freeze-tolerant phenotypes at an expanding range edge. Functional Ecology 29: 1332–1340.

    Google Scholar 

  • Crawford, P. H. C. & B. W. Hoagland, 2009. Can herbarium records be used to map alien species invasion and native species expansion over the past 100 years? Journal of Biogeography 36: 651–661.

    Google Scholar 

  • D’Andrea, L., O. Broennimann, G. Kozlowski, A. Guisan, X. Morin, J. Keller-Senften & F. Felber, 2009. Climate change, anthropogenic disturbance and the northward range expansion of Lactuca serriola (Asteraceae). Journal of Biogeography 36: 1573–1587.

    Google Scholar 

  • Duke, N. C., M. C. Ball & J. C. Ellison, 1998. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters 7: 27.

    Google Scholar 

  • Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. McC, M. Overton, A. Townsend Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberón, S. Williams, M. S. Wisz & N. E. Zimmermann, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.

    Google Scholar 

  • Farnsworth, E., 2000. The ecology and physiology of viviparous and recalcitrant seeds. Annual Review of Ecology and Systematics 31: 107–138.

    Google Scholar 

  • Fromard, F., C. Vega & C. Proisy, 2004. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. Marine Geology 208: 265–280.

    Google Scholar 

  • Fuller, D. O., 2005. Remote detection of invasive Melaleuca trees (Melaleuca quinquenervia) in South Florida with multispectral IKONOS imagery. International Journal of Remote Sensing 26: 1057–1063.

    Google Scholar 

  • GBIF, 2019. GBIF.org. GBIF Occurrence Download. https://doi.org/10.15468/dl.xhmnwb.

  • Gilman, E. L., J. Ellison, N. C. Duke & C. Field, 2008. Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany 89: 237–250.

    Google Scholar 

  • Giri, C., B. Pengra, Z. Zhu, A. Singh & L. L. Tieszen, 2007. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuarine, Coastal and Shelf Science 73: 91–100.

    Google Scholar 

  • Giri, C., J. Long, S. Abbas, R. M. Murali, F. M. Qamer, B. Pengra & D. Thau, 2015. Distribution and dynamics of mangrove forests of South Asia. Journal of Environmental Management 148: 101–111.

    PubMed  Google Scholar 

  • Guo, H., Y. Zhang, Z. Lan & S. C. Pennings, 2013. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change. Global Change Biology 19: 2765–2774.

    PubMed  Google Scholar 

  • Hayes, M. A., A. C. Shor, A. Jesse, C. Miller, J. P. Kennedy & I. Feller, 2020. The role of glycine betaine in range expansions; protecting mangroves against extreme freeze events. Journal of Ecology 108: 61–69.

    CAS  Google Scholar 

  • Hoekstra, J. M., J. L. Molnar, M. Jennings, C. Revenga, M. D. Spalding, T. M. Boucher, J. C. Robertson & T. J. Heibel, 2010. The Atlas of Global Conservation: Changes, Challenges, and Opportunities to Make a Difference. University of California Press, Berkeley.

    Google Scholar 

  • Houghton, J., 2009. Global Warming: The Complete Briefing, Fourth edition. Eos, Transactions American Geophysical Union.

  • Huxham, M., M. P. Kumara, L. P. Jayatissa, K. W. Krauss, J. Kairo, J. Langat, et al., 2010. Intra- and interspecific facilitation in mangroves may increase resilience to climate change threats. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2127–2135.

    Google Scholar 

  • IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Kuenzer, C., A. Bluemel, S. Gebhardt, T. V. Quoc & S. Dech, 2011. Remote sensing of mangrove ecosystems: a review. Remote Sensing 3: 878–928.

    Google Scholar 

  • Lang, P. L. M., F. M. Willems, J. F. Scheepens, H. A. Burbano & O. Bossdorf, 2019. Using herbaria to study global environmental change. New Phytologist 221: 110–122.

    PubMed  Google Scholar 

  • Levin, S. A., H. C. Muller-Landau, R. Nathan & J. Chave, 2003. The ecology and evolution of seed dispersal: a theoretical perspective. Annual Review of Ecology, Evolution, and Systematics 34: 575–604.

    Google Scholar 

  • McKee, K. L. & J. E. Rooth, 2008. Where temperate meets tropical: multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Global Change Biology 14: 971–984.

    Google Scholar 

  • Meineke, E. K., C. C. Davis & T. J. Davies, 2018. The unrealized potential of herbaria for global change biology. Ecological Monographs 88: 505–525.

    Google Scholar 

  • Miller-Rushing, A. J., R. B. Primack, D. Primack & S. Mukunda, 2006. Photographs and herbarium specimens as tools to document phenological changes in response to global warming. American Journal of Botany 93: 1667–1674.

    PubMed  Google Scholar 

  • Mosena, A., T. Steinlein & W. Beyschlag, 2018. Reconstructing the historical spread of non-native plants in the North American West from herbarium specimens. Flora 242: 45–52.

    Google Scholar 

  • NOAA, 2019. National Centers for Environmental information. Climate at a Glance: Global Time Series. https://www.ncdc.noaa.gov/cag.

  • Osland, M. J., R. H. Day, C. T. Hall, M. D. Brumfield, J. L. Dugas & W. R. Jones, 2017a. Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients. Ecology 98: 125–137.

    PubMed  Google Scholar 

  • Osland, M. J., L. C. Feher, K. T. Griffith, K. C. Cavanaugh, N. M. Enwright, R. H. Day, C. L. Stagg, K. W. Krauss, R. J. Howard, J. B. Grace & K. Rogers, 2017b. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecological Monographs 87: 341–359.

    Google Scholar 

  • Osland, M. J., L. C. Feher, J. López-Portillo, R. H. Day, D. O. Suman, J. M. Guzmán Menéndez & V. H. Rivera-Monroy, 2018. Mangrove forests in a rapidly changing world: global change impacts and conservation opportunities along the Gulf of Mexico coast. Estuarine, Coastal and Shelf Science 214: 120–140.

    CAS  Google Scholar 

  • Osland, M. J., A. M. Hartmann, R. H. Day, M. S. Ross, C. T. Hall, L. C. Feher & W. C. Vervaeke, 2019. Microclimate influences mangrove freeze damage: implications for range expansion in response to changing macroclimate. Estuaries and Coasts 42: 1084–1096.

    Google Scholar 

  • Osland, M. J., R. H. Day & T. C. Michot, 2020. Frequency of extreme freeze events controls the distribution and structure of black mangroves (Avicennia germinans) near their northern range limit in coastal Louisiana. Diversity and Distributions. https://doi.org/10.1111/ddi.13119.

    Article  Google Scholar 

  • Pearson, K. D., 2018. Rapid enhancement of biodiversity occurrence records using unconventional specimen data. Biodiversity and Conservation 27: 3007–3018.

    Google Scholar 

  • Pecl, G. T., M. B. Araujo, J. D. Bell, J. Blanchard, T. C. Bonebreak, et al., 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355(6332): eaai9214.

    PubMed  Google Scholar 

  • Record, S., N. D. Charney, R. M. Zakaria & A. M. Ellison, 2013. Projecting global mangrove species and community distributions under climate change. Ecosphere 4: 34.

    Google Scholar 

  • Reef, R. & C. E. Lovelock, 2014. Historical analysis of mangrove leaf traits throughout the 19th and 20th centuries reveals differential responses to increases in atmospheric CO2. Global Ecology and Biogeography 23: 1209–1214.

    Google Scholar 

  • Saintilan, N., N. C. Wilson, K. Rogers, A. Rajkaran & K. W. Krauss, 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20: 147–157.

    PubMed  Google Scholar 

  • Sippo, J. Z., C. E. Lovelock, I. R. Santos, C. J. Sanders & D. T. Maher, 2018. Mangrove mortality in a changing climate: an overview. Estuarine, Coastal and Shelf Science 215: 241–249.

    Google Scholar 

  • Spalding, M. D., H. E. Fox, G. R. Allen, N. Davidson, Z. A. Ferdaña, M. Finlayson, B. S. Halpern, M. A. Jorge, A. Lombana, S. A. Lourie, K. D. Martin, E. McManus, J. Molnar, C. A. Recchia & J. Robertson, 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57: 573–583.

    Google Scholar 

  • Stuart, S. A., B. Choat, K. C. Martin, N. M. Holbrook & M. C. Ball, 2007. The role of freezing in setting the latitudinal limits of mangrove forests. New Phytologist 173: 576–583.

    CAS  PubMed  Google Scholar 

  • Tomiolo, S. & D. Ward, 2018. Species migrations and range shifts: a synthesis of causes and consequences. Perspectives in Plant Ecology, Evolution and Systematics 33: 62–77.

    Google Scholar 

  • Tomlinson, P. B., 2016. The Botany of Mangroves. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ward, R. D., D. A. Friess, R. H. Day & R. A. MacKenzie, 2016. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosystem Health and Sustainability 2(4): e01211.

    Google Scholar 

  • Willis, C. G., E. R. Ellwood, R. B. Primack, C. C. Davis, K. D. Pearson, A. S. Gallinat, J. M. Yost, G. Nelson, S. J. Mazer, N. L. Rossington, T. H. Sparks & P. S. Soltis, 2017. Old plants, new tricks: phenological research using herbarium specimens. Trends in Ecology and Evolution 32: 531–546.

    PubMed  Google Scholar 

  • Ye, Y., C. Y. Lu, Y. S. Wong & N. F. Y. Tam, 2004. Diaspore traits and inter-tidal zonation of non-viviparous mangrove species. Acta Botanica Sinica 46: 896–906.

    Google Scholar 

Download references

Funding

This study was jointly supported by the National Key Research and Development Program of China (2017YFC0506103), the National Natural Science Foundation of China (#31770579). We would like to thank the anonymous reviewers for their useful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Fazlioglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Emily M. Dangremond

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1209 kb)

Supplementary file2 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazlioglu, F., Wan, J.S.H. & Chen, L. Latitudinal shifts in mangrove species worldwide: evidence from historical occurrence records. Hydrobiologia 847, 4111–4123 (2020). https://doi.org/10.1007/s10750-020-04403-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04403-x

Keywords

Navigation