Skip to main content

Advertisement

Log in

Acute exposure of larval rainbow trout (Oncorhynchus mykiss) to elevated temperature limits hsp70b expression and influences future thermotolerance

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

As poikilotherms, fish health is compromised by exposure to elevated temperatures (e.g. climate change-related warming, anthropogenic thermal pollution, and/or hatchery processes). While fish thermotolerance has been demonstrated to be plastic, the downstream impacts of early life-stage high temperature exposure are not known. In the present study, we investigated the thermotolerance of rainbow trout (Oncorhynchus mykiss) fry 2 months after being exposed to elevated temperature (22°C) for 96 h. Exposed fry demonstrated a reduced critical thermal maxima (CTmax) in comparison to control fish. Using the RNase H-dependent quantitative PCR method, expression of rainbow trout hsp70 isoforms was determined immediately after the acute thermal stress and immediately following the thermotolerance trials. The lowered CTmax was associated with a reduced ability to upregulate the hsp70b gene during the thermotolerance trials, whereas no changes in hsp70a were observed. Overall, these results indicate that exposure to thermal stress in early life-stages of rainbow trout can have negative effects on future physiological function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Anttila, K., F. Mauduit, S. Le Floch, G. Claireaux & M. Nikinmaa, 2017. Influence of crude oil exposure on cardiac function and thermal tolerance of juvenile rainbow trout and European sea bass. Environmental Science and Pollution Research 24: 19624–19634.

    Article  CAS  PubMed  Google Scholar 

  • Basu, N., T. Nakano, E. G. Grau & G. K. Iwama, 2001. The effects of cortisol on Heat Shock Protein 70 levels in two fish species. General and Comparative Endocrinology 124: 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Basu, N., A. E. Todgham, P. A. Ackerman, M. R. Bibeau, K. Nakano, P. M. Schulte & G. K. Iwama, 2002. Heat shock protein genes and their functional significance in fish. Gene 295: 173–183.

    Article  CAS  PubMed  Google Scholar 

  • Becker, C. D. & R. G. Genoway, 1979. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environmental Biology of Fishes 4: 245–256.

    Article  Google Scholar 

  • Behnke, R., 2010. Trout and Salmon of North America. Simon and Schuster, Inc., New York.

    Google Scholar 

  • Beitinger, T. L., W. A. Bennett & R. W. McCauley, 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes 58: 237–275.

    Article  Google Scholar 

  • Berthelot, C., F. Brunet, D. Chalopin, A. Juanchich, M. Bernard, B. Noël, P. Bento, C. Da Silva, K. Labadie & A. Alberti, 2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nature Communications 5: 3657.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bevelhimer, M. & W. Bennett, 2000. Assessing cumulative thermal stress in fish during chronic intermittent exposure to high temperatures. Environmental Science Policy 3: 211–216.

    Article  Google Scholar 

  • Billard, R., 1983. Environmental factors in salmonid culture and the control of reproduction. In International Symposium on Salmonid Reproduction, Bellevue, Washington, USA, 31 October–2 November 1983. Washington Sea Grant Program. University of Washington, Washington DC.

  • Blair, S. D., D. Matheson, Y. He & G. G. Goss, 2016. Reduced salinity tolerance in the Arctic grayling (Thymallus arcticus) is associated with rapid development of a gill interlamellar cell mass: implications of high-saline spills on native freshwater salmonids. Conservation Physiology 4: cow010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaxter, J. H. S., 1991. The effect of temperature on larval fishes. Netherlands Journal of Zoology 42: 336–357.

    Article  Google Scholar 

  • Boyle, D., S. D. Blair, D. Chamot & G. G. Goss, 2016. Characterization of developmental Na+ uptake in rainbow trout larvae supports a significant role for Nhe3b. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology 201: 30–36.

    Article  CAS  Google Scholar 

  • Brett, J. R., 1970. Temperature. 3.3. Animals. 3.32. Fishes. In Kinne, O. (ed.), Marine Ecology. Wiley Interscience, London.

    Google Scholar 

  • Brown, G. W. & J. T. Krygier, 1970. Effects of clear-cutting on stream temperature. Water Resources Research 6: 1133–1139.

    Article  Google Scholar 

  • Buisson, L., W. Thuiller, S. Lek, P. Lim & G. Grenouillet, 2008. Climate change hastens the turnover of stream fish assemblages. Global Change Biology 14: 2232–2248.

    Article  Google Scholar 

  • Claireaux, G., M. Théron, M. Prineau, M. Dussauze, F.-X. Merlin & S. Le Floch, 2013. Effects of oil exposure and dispersant use upon environmental adaptation performance and fitness in the European sea bass, Dicentrarchus labrax. Aquatic Toxicology 130–131: 160–170.

    Article  CAS  PubMed  Google Scholar 

  • Cowles, R. B. & C. M. Bogert, 1944. A preliminary study of the thermal requirements of desert reptiles. Iguana 83: 53.

    Google Scholar 

  • Currie, S., 2000. The effects of heat shock and acclimation temperature on hsp70 and hsp30 mRNA expression in rainbow trout: in vivo and in vitro comparisons. Journal of Fish Biology 56: 398–408.

    Article  CAS  Google Scholar 

  • Currie, S. & B. Tufts, 1997. Synthesis of stress protein 70 (Hsp70) in rainbow trout (Oncorhynchus mykiss) red blood cells. Journal of Experimental Biology 200: 607–614.

    CAS  PubMed  Google Scholar 

  • Currie, R. J., W. A. Bennett & T. L. Beitinger, 1998. Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures. Environmental Biology of Fishes 51: 187–200.

    Article  Google Scholar 

  • Dobosy, J. R., S. D. Rose, K. R. Beltz, S. M. Rupp, K. M. Powers, M. A. Behlke & J. A. Walder, 2011. RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnology 11: 80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fangue, N. A., M. Hofmeister & P. Schulte, 2006. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. Journal of Experimental Biology 209: 2859–2872.

    Article  CAS  PubMed  Google Scholar 

  • Fowler, S. L., D. Hamilton & S. Currie, 2009. A comparison of the heat shock response in juvenile and adult rainbow trout (Oncorhynchus mykiss)—implications for increased thermal sensitivity with age. Canadian Journal of Fisheries and Aquatic Sciences 66: 91–100.

    Article  Google Scholar 

  • Gallant, M. J., S. LeBlanc, T. J. MacCormack & S. Currie, 2017. Physiological responses to a short-term, environmentally realistic, acute heat stress in Atlantic salmon, Salmo salar. FACETS 2: 330–341.

    Article  Google Scholar 

  • Grande, M. & S. Andersen, 1991. Critical thermal maxima for young salmonids. Journal of Freshwater Ecology 6: 275–279.

    Article  Google Scholar 

  • Herb, W. R., B. Janke, O. Mohseni & H. G. Stefan, 2008. Thermal pollution of streams by runoff from paved surfaces. Hydrological Processes 22: 987–999.

    Article  Google Scholar 

  • Hokanson, K. E., C. F. Kleiner & T. W. Thorslund, 1977. Effects of constant temperatures and diel temperature fluctuations on specific growth and mortality rates and yield of juvenile rainbow trout, Salmo gairdneri. Journal of the Fisheries Research Board of Canada 34: 639–648.

    Article  Google Scholar 

  • IPCC, 2007. In Pachauri,R. K. & A. Reisenger (eds) Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.

  • Iwama, G. K., P. T. Thomas, R. B. Forsyth & M. M. Vijayan, 1998. Heat shock protein expression in fish. Reviews in Fish Biology and Fisheries 8: 35–56.

    Article  Google Scholar 

  • Kaushal, S. S., G. E. Likens, N. A. Jaworski, M. L. Pace, A. M. Sides, D. Seekell, K. T. Belt, D. H. Secor & R. L. Wingate, 2010. Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment 8: 461–466.

    Article  Google Scholar 

  • Kothary, R. K., D. Jones & E. P. Candido, 1984. 70-Kilodalton heat shock polypeptides from rainbow trout: characterization of cDNA sequences. Molecular and Cellular Biology 4: 1785–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krone, P. H., J. B. Sass & Z. Lele, 1997. Heat shock protein gene expression during embryonic development of the zebrafish. Cellular and Molecular Life Sciences 53: 122–129.

    Article  CAS  PubMed  Google Scholar 

  • Langford, T., 1990. Ecological Effects of Thermal Discharges. Elsevier, New York.

    Google Scholar 

  • Lee, R. M. & J. N. Rinne, 1980. Critical thermal maxima of five trout species in the southwestern United States. Transactions of the American Fisheries Society 109: 632–635.

    Article  Google Scholar 

  • Mauduit, F., P. Domenici, A. P. Farrell, C. Lacroix, S. Le Floch, P. Lemaire, A. Nicolas-Kopec, M. Whittington, J. L. Zambonino-Infante & G. Claireaux, 2016. Assessing chronic fish health: An application to a case of an acute exposure to chemically treated crude oil. Aquatic Toxicology 178: 197–208.

    Article  CAS  PubMed  Google Scholar 

  • McCullough, D. A., J. M. Bartholow, H. I. Jager, R. L. Beschta, E. F. Cheslak, M. L. Deas, J. L. Ebersole, J. S. Foott, S. L. Johnson, K. R. Marine, M. G. Mesa, J. H. Petersen, Y. Souchon, K. F. Tiffan & W. A. Wurtsbaugh, 2009. Research in thermal biology: burning questions for coldwater stream fishes. Reviews in Fisheries Science 17: 90–115.

    Article  Google Scholar 

  • Mohseni, O., H. G. Stefan & J. G. Eaton, 2003. Global warming and potential changes in fish habitat in US streams. Climatic Change 59: 389–409.

    Article  CAS  Google Scholar 

  • Moore, K. M. & S. V. Gregory, 1988. Summer habitat utilization and ecology of cutthroat trout fry (Salmo clarki) in Cascade Mountain streams. Canadian Journal of Fisheries and Aquatic Sciences 45: 1921–1930.

    Article  Google Scholar 

  • Morrison, J. K. & C. E. Smith, 1986. Altering the spawning cycle of rainbow trout by manipulating water temperature. The Progressive Fish-Culturist 48: 52–54.

    Article  Google Scholar 

  • Myrick, C. A. & J. J. Cech, 2000. Temperature influences on California rainbow trout physiological performance. Fish Physiology and Biochemistry 22: 245–254.

    Article  CAS  Google Scholar 

  • Ojima, N., M. Yamashita & S. Watabe, 2005a. Quantitative mRNA expression profiling of heat-shock protein families in rainbow trout cells. Biochemical and Biophysical Research Communications 329: 51–57.

    Article  CAS  PubMed  Google Scholar 

  • Ojima, N., M. Yamashita & S. Watabe, 2005b. Comparative expression analysis of two paralogous Hsp70s in rainbow trout cells exposed to heat stress. Biochimica et Biophysica Acta – Gene Structure and Expression 1681: 99–106.

    Article  CAS  Google Scholar 

  • Pankhurst, N. W., G. J. Purser, G. Van Der Kraak, P. M. Thomas & G. N. R. Forteath, 1996. Effect of holding temperature on ovulation, egg fertility, plasma levels of reproductive hormones and in vitro ovarian steroidogenesis in the rainbow trout Oncorhynchus mykiss. Aquaculture 146: 277–290.

    Article  CAS  Google Scholar 

  • Parker, F. L., 1974. Thermal Pollution and the Environment. In Sax, N. I. (ed.), Industrial Pollution. Van Nostrand Rheinhold, New York.

    Google Scholar 

  • Pfaffl, M. W., 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 29: e45–e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rendell, J. L., S. Fowler, A. Cockshutt & S. Currie, 2006. Development-dependent differences in intracellular localization of stress proteins (hsps) in rainbow trout, Oncorhynchus mykiss, following heat shock. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 1: 238–252.

    Google Scholar 

  • Richards, J. G., 2003. Na+/K+-ATPase-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. Journal of Experimental Biology 206: 4475–4486.

    Article  CAS  PubMed  Google Scholar 

  • Rombough, P. J., 1997. The effects of temperature on embryonic and larval development. In Wood, C. M. & D. G. McDonald (eds.), Global Warming: Implications for Freshwater and Marine Fish. Cambridge University Press, New York.

    Google Scholar 

  • Schindler, D. W., 1997. Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrological Processes 11: 1043–1067.

    Article  Google Scholar 

  • Schurmann, H., J. F. Steffensen & J. P. Lomholt, 1991. The influence of hypoxia on the preferred temperature of rainbow trout Oncorhynchus mykiss. Journal of Experimental Biology 157: 75–86.

    Google Scholar 

  • Segner, H., M. Schmitt-Jansen & S. Sabater, 2014. Assessing the impact of multiple stressors on aquatic biota: the receptor’s side matters. Environmental Science & Technology 48: 7690–7696.

    Article  CAS  Google Scholar 

  • Sung, Y. Y., H. J. Liew, A. M. Ambok Bolong, M. E. Abdul Wahid & T. H. MacRae, 2014. The induction of Hsp70 synthesis by non-lethal heat shock confers thermotolerance and resistance to lethal ammonia stress in the common carp, Cyprinus carpio (Linn). Aquaculture Research 45: 1706–1712.

    Article  CAS  Google Scholar 

  • Symons, P. E. K. & M. Heland, 1978. Stream habitats and behavioral interactions of underyearling and yearling Atlantic salmon (Salmo salar). Journal of the Fisheries Research Board of Canada 35: 175–183.

    Article  Google Scholar 

  • Thorgaard, G. H., M. E. Jazwin & A. R. Stier, 1981. Polyploidy induced by heat shock in rainbow trout. Transactions of the American Fisheries Society 110: 546–550.

    Article  Google Scholar 

  • Urbina, M. A., P. M. Schulte, J. S. Bystriansky & C. N. Glover, 2013. Differential expression of Na+, K+-ATPase α-1 isoforms during seawater acclimation in the amphidromous galaxiid fish Galaxias maculatus. Journal of Comparative Physiology B 183: 345–357.

    Article  CAS  Google Scholar 

  • Verhille, C. E., K. K. English, D. E. Cocherell, A. P. Farrell & N. A. Fangue, 2016. High thermal tolerance of a rainbow trout population near its southern range limit suggest local thermal adjustment. Conservation Physiology 4: cow57.

    Google Scholar 

  • Wan, J., X. Ge, B. Liu, J. Xie, S. Cui, M. Zhou, S. Xia & R. Chen, 2014. Effect of dietary vitamin C on non-specific immunity and mRNA expression of three heat shock proteins (HSPs) in juvenile Megalobrama amblycephala under pH stress. Aquaculture 434: 325–333.

    Article  CAS  Google Scholar 

  • Webb, B. W., 1996. Trends in stream and river temperature. Hydrological Processes 10: 205–226.

    Article  Google Scholar 

  • Weber, G. M., K. Martin, J. Kretzer, H. Ma & D. Dixon, 2016. Effects of incubation temperatures on embryonic larval survival in rainbow trout, Oncorhynchus mykiss. Journal of Applied Aquaculture 28: 285–297.

    Article  Google Scholar 

  • Werner, I., C. S. Koger, J. T. Hamm & D. E. Hinton, 2001. Ontogeny of the heat shock protein, hsp70 and hsp60, response and developmental effects of heat shock in the teleost, medaka (Oryzias latipes). Environmental Sciences 8: 13–29.

    CAS  Google Scholar 

  • Werner, I., J. Linares-Casenave, J. P. Van Eenennaam & S. I. Doroshov, 2007. The effect of temperature stress on development and heat-shock protein expression in larval Green Sturgeon (Acipenser mirostris). Environmental Biology of Fishes 79: 191–200.

    Article  Google Scholar 

  • Whitehouse, L. M., C. S. McDougall, D. I. Stefanovic, D. R. Boreham, C. M. Somers, J. Y. Wilson & R. G. Manzon, 2017. Development of the embryonic heat shock response and the impact of repeated thermal stress in early stage lake whitefish (Coregonus clupeaformis) embryos. Journal of Thermal Biology 69: 294–301.

    Article  PubMed  Google Scholar 

  • Yamashita, M. & M. Hojo, 2004. Generation of a transgenic zebrafish model overexpressing heat shock protein HSP70. Marine Biotechnology 6: S1–7.

    Article  CAS  Google Scholar 

  • Yamashita, M., T. Yabu & N. Ojima, 2010. Stress Protein HSP70 in Fish. Aqua-BioScience Monographs 3: 111–141.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Greg Goss for the use of laboratory space and animals. They are grateful for Brian Charles and Raven Brood Trout Station for providing rainbow trout embryos. Thanks to Tad Plesowicz and Erik Folkerts for assistance with fish husbandry. The authors would also like to thank Troy Locke and the staff at MBSU for their support and expertise. This research was supported by a Campus Alberta Innovates Program Research Chair to CNG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore D. Blair.

Additional information

Handling editor: Christian Sturmbauer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blair, S.D., Glover, C.N. Acute exposure of larval rainbow trout (Oncorhynchus mykiss) to elevated temperature limits hsp70b expression and influences future thermotolerance. Hydrobiologia 836, 155–167 (2019). https://doi.org/10.1007/s10750-019-3948-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3948-1

Keywords

Navigation