Skip to main content
Log in

Nutrient recycling by insect and fish communities in high-elevation tropical streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

High- to mid-elevation streams are often oligotrophic, but harbor diverse groups of aquatic animals that can satisfy a substantial proportion of nutrient demand. Therefore, we tested the proportion of nutrient demand met by two dominant guilds of animal consumers in the Andes to ask: (1) Do excretion rates vary between insects and fish in montane tropical stream ecosystems? (2) What consumer guild dominates areal nutrient regeneration? (3) What is the nutrient demand and what proportion are consumer taxa regenerating? We combined aquatic insect and fish biomass estimates with measured excretion rates of two fish species (one native, one introduced) and six aquatic insects and estimated nutrient demand in streams by conducting nutrient uptake measurements. Insect taxa had higher per-capita excretion rates than fish and had higher excretion N:P. Aquatic insect biomass tended to be higher than fish biomass and consequently total areal excretion rates by insects were higher. Collectively, communities contributed up to 15–24% of NH4–N demand and 1–19% of SRP demand. The additive effect of these groups on nutrient availability is likely an important function in low-nutrient tropical streams. Further work needs to be conducted to examine the interactions within entire communities and consequential impacts on nutrient cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albanese, B., P. L. Angermeier & J. T. Peterson, 2009. Does mobility explain variation in colonisation and population recovery among stream fishes? Freshwater Biology 54: 1444–1460.

    Article  Google Scholar 

  • Alexiades, A. & A. Encalada, 2017. Distribution and habitat suitability of Andean Climbing Catfish in the Napo River Basin, Ecuador. Tropical Conservation Science 10: 1940082917709598.

    Article  Google Scholar 

  • Alexiades, A. V., A. S. Flecker & C. E. Kraft, 2017. Nonnative fish stocking alters stream ecosystem nutrient dynamics. Ecological Applications 27: 956–965.

    Article  PubMed  Google Scholar 

  • Allen, D. C., C. C. Vaughn, J. F. Kelly, J. T. Cooper & M. Engel, 2012. Bottom-up biodiversity effects increase resource subsidy flux between ecosystems. Ecology 93: 2165–2174.

    Article  PubMed  Google Scholar 

  • Allgeier, J. E., S. J. Wenger, A. D. Rosemond, D. E. Schindler & C. A. Layman, 2015. Metabolic theory and taxonomic identity predict nutrient recycling in a diverse food web. Proceedings of the National Academy of Sciences 112: E2640–E2647.

    Article  CAS  Google Scholar 

  • Allgeier, J. E., L. A. Yeager & C. A. Layman, 2013. Consumers regulate nutrient limitation regimes and primary production in seagrass ecosystems. Ecology 94: 521–529.

    Article  PubMed  Google Scholar 

  • Alves, J. M., A. Caliman, R. D. Guariento, M. P. Figueiredo-Barros, L. S. Carneiro, V. F. Farjalla, R. L. Bozelli & F. A. Esteves, 2010. Stoichiometry of benthic invertebrate nutrient recycling: interspecific variation and the role of body mass. Aquatic Ecology 44: 421–430.

    Article  CAS  Google Scholar 

  • Anderson, N. & K. W. Cummins, 1979. Influences of diet on the life histories of aquatic insects. Journal of the Fisheries Research Board of Canada 36: 335–342.

    Article  Google Scholar 

  • Atkinson, C. L., C. C. Vaughn, K. J. Forshay & J. T. Cooper, 2013. Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics. Ecology 94: 1359–1369.

    Article  PubMed  Google Scholar 

  • Atkinson, C. L., J. F. Kelly & C. C. Vaughn, 2014. Tracing consumer-derived nitrogen in riverine food webs. Ecosystems 17: 485–496.

    Article  CAS  Google Scholar 

  • Atkinson, C. L. & C. C. Vaughn, 2015. Biogeochemical hotspots: temporal and spatial scaling of the impact of freshwater mussels on ecosystem function. Freshwater Biology 60: 563–574.

    Article  CAS  Google Scholar 

  • Atkinson, C. L., K. A. Capps, A. T. Rugenski & M. J. Vanni, 2017. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems. Biological Reviews 92: 2003–2023.

    Article  PubMed  Google Scholar 

  • Atkinson, C. L., A. C. Encalada, A. T. Rugenski, S. A. Thomas, A. Landeira-Dabarca, N. L. Poff & A. S. Flecker, 2018a. Determinants of food resource assimilation by stream insects along a tropical elevation gradient. Oecologia 187: 731–744.

    Article  PubMed  Google Scholar 

  • Atkinson, C. L., B. J. Sansom, C. C. Vaughn & K. J. Forshay, 2018b. Consumer aggregations drive nutrient dynamics and ecosystem metabolism in nutrient-limited systems. Ecosystems 21: 521–535.

    Article  CAS  Google Scholar 

  • Attayde, J. L. & L. A. Hansson, 1999. Effects of nutrient recycling by zooplankton and fish on phytoplankton communities. Oecologia 121: 47–54.

    Article  PubMed  Google Scholar 

  • Balik, J. A., B. W. Taylor, S. E. Washko & S. A. Wissinger, 2018. High interspecific variation in nutrient excretion within a guild of closely related caddisfly species. Ecosphere 9: e02205.

    Article  Google Scholar 

  • Beauchamp, D. A., D. L. Parrish & R. A. Whaley, 2009. Coldwater fish in large standing waters. In Bonar, S. A., W. A. Hubert & D. W. Willis (eds), Standard methods for sampling North American freshwater fishes. American Fisheries Society, Bethesda, Maryland: 97–117.

    Google Scholar 

  • Benke, A. C., 1998. Production dynamics of riverine chironomids: extremely high biomass turnover rates of primary consumers. Ecology 79: 899–910.

    Article  Google Scholar 

  • Benke, A. C. & A. D. Huryn, 2010. Benthic invertebrate production-facilitating answers to ecological riddles in freshwater ecosystems. Journal of the North American Benthological Society 29: 264–285.

    Article  Google Scholar 

  • Benstead, J. P., W. F. Cross, J. G. March, W. H. McDowell, A. Ramirez & A. P. Covich, 2010. Biotic and abiotic controls on the ecosystem significance of consumer excretion in two contrasting tropical streams. Freshwater Biology 55: 2047–2061.

    Article  Google Scholar 

  • Boers, P., L. Ballegooiejen & J. Uunk, 1991. Changes in phosphorus cycling in a shallow lake due to food web manipulations. Freshwater Biology 25: 9–20.

    Article  CAS  Google Scholar 

  • Bojsen, B. & R. Barriga, 2002. Effects of deforestation on fish community structure in Ecuadorian Amazon streams. Freshwater Biology 47: 2246–2260.

    Article  Google Scholar 

  • Caliman, A., L. S. Carneiro, J. J. Leal, V. F. Farjalla, R. L. Bozelli & F. A. Esteves, 2013. Biodiversity effects of ecosystem engineers are stronger on more complex ecosystem processes. Ecology 94: 1977–1985.

    Article  PubMed  Google Scholar 

  • Caliman, A., J. J. Leal, F. A. Esteves, L. S. Carneiro, R. L. Bozelli & V. F. Farjalla, 2007. Functional bioturbator diversity enhances benthic–pelagic processes and properties in experimental microcosms. Journal of the North American Benthological Society 26: 450–459.

    Article  Google Scholar 

  • Capps, K. A. & A. S. Flecker, 2013a. Invasive aquarium fish transform ecosystem nutrient dynamics. Proceedings of the Royal Society B: Biological Sciences 280: 20131520.

    Article  PubMed  PubMed Central  Google Scholar 

  • Capps, K. A. & A. S. Flecker, 2013b. Invasive fishes generate biogeochemical hotspots in a nutrient-limited system. PLoS ONE 8: e54093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capps, K. A., C. L. Atkinson & A. T. Rugenski, 2015a. Implications of species addition and decline for nutrient dynamics in fresh waters. Freshwater Science 34: 485–496.

    Article  Google Scholar 

  • Capps, K. A., K. A. Berven & S. D. Tiegs, 2015b. Modelling nutrient transport and transformation by pool-breeding amphibians in forested landscapes using a 21-year dataset. Freshwater Biology 60: 500–511.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., C. E. Kraft, R. Wright, X. He, P. A. Soranno & J. R. Hodgson, 1992. Resilience and resistance of a lake phosphorus cycle before and after food web manipulation. American Naturalist 140: 781–798.

    Article  CAS  Google Scholar 

  • Childress, E., J. D. Allan & P. McIntyre, 2014. Nutrient subsidies from iteroparous fish migrations can enhance stream productivity. Ecosystems 17: 522–534.

    Article  CAS  Google Scholar 

  • Childress, E. S. & P. B. McIntyre, 2015. Multiple nutrient subsidy pathways from a spawning migration of iteroparous fish. Freshwater Biology 60: 490–499.

    Article  CAS  Google Scholar 

  • Covino, T. P., B. L. McGlynn & R. A. McNamara, 2010. Tracer additions for spiraling curve characterization (TASCC): quantifying stream nutrient uptake kinetics from ambient to saturation. Limnology and Oceanography-Methods 8: 484–498.

    Article  CAS  Google Scholar 

  • Cross, W. F., J. P. Benstead, A. D. Rosemond & J. B. Wallace, 2003. Consumer-resource stoichiometry in detritus-based streams. Ecology Letters 6: 721–732.

    Article  Google Scholar 

  • Dalton, C. M., K. E. Tracy, N. G. Hairston Jr. & A. S. Flecker, 2018. Fasting or fear: disentangling the roles of predation risk and food deprivation in the nitrogen metabolism of consumers. Ecology 65: 394–400.

    Google Scholar 

  • Davis, J. M., A. D. Rosemond, S. L. Eggert, W. F. Cross & J. B. Wallace, 2010. Long-term nutrient enrichment decouples predator and prey production. Proceedings of the National Academy of Sciences of the United States of America 107: 121–126.

    Article  PubMed  Google Scholar 

  • DeLury, D. B., 1947. On the estimation of biological populations. Biometrics 3: 145–167.

    Article  CAS  PubMed  Google Scholar 

  • Dodds, W. K., A. J. Lopez, W. B. Bowden, S. Gregory, N. B. Grimm, S. K. Hamilton, A. E. Hershey, E. Marti, W. H. McDowell, J. L. Meyer, D. Morrall, P. J. Mulholland, B. J. Peterson, J. L. Tank, H. M. Valett, J. R. Webster & W. Wollheim, 2002. N uptake as a function of concentration in streams. Journal of the North American Benthological Society 21: 206–220.

    Article  Google Scholar 

  • Elser, J. J., R. W. Sterner, E. Gorokhova, W. F. Fagan, T. A. Markow, J. B. Cotner, J. F. Harrison, S. E. Hobbie, G. M. Odell & L. J. Weider, 2000. Biological stoichiometry from genes to ecosystems. Ecology Letters 3: 540–550.

    Article  Google Scholar 

  • Elwood, J. W., J. D. Newbold, A. F. Trimble & R. W. Stark, 1981. The limiting role of phosphorus in a woodland stream ecosystem: effects of P enrichment on leaf decomposition and primary producers. Ecology 62: 146–158.

    Article  CAS  Google Scholar 

  • Evans-White, M. A., R. S. Stelzer & G. A. Lamberti, 2005. Taxonomic and regional patterns in benthic macroinvertebrate elemental composition in streams. Freshwater Biology 50: 1786–1799.

    Article  CAS  Google Scholar 

  • Frost, P. C., S. E. Tank, M. A. Turner & J. J. Elser, 2003. Elemental composition of littoral invertebrates from oligotrophic and eutrophic Canadian lakes. Journal of the North American Benthological Society 22: 51–62.

    Article  Google Scholar 

  • Grimm, N. B., 1988a. Feeding dynamics, nitrogen budgets, and ecosystem role of a desert stream omnivore, Agosia chrysogaster (Pisces, Cyprinidae). Environmental Biology of Fishes 21: 143–152.

    Article  Google Scholar 

  • Grimm, N. B., 1988b. Role of macroinvertebrates in nitrogen dynamics of a desert stream. Ecology 69: 1884–1893.

    Article  Google Scholar 

  • Hall, R. O., J. L. Tank & M. F. Dybdahl, 2003. Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Frontiers in Ecology and the Environment 1: 407–411.

    Article  Google Scholar 

  • Halvorson, H. M., C. Fuller, S. A. Entrekin & M. A. Evans-White, 2015. Dietary influences on production, stoichiometry and decomposition of particulate wastes from shredders. Freshwater Biology 60: 466–478.

    Article  CAS  Google Scholar 

  • Halvorson, H. M., E. Sperfeld & M. A. Evans-White, 2017. Quantity and quality limit detritivore growth: mechanisms revealed by ecological stoichiometry and co-limitation theory. Ecology 98: 2995–3002.

    Article  PubMed  Google Scholar 

  • Hoellein, T. J., C. B. Zarnoch, D. A. Bruesewitz & J. DeMartini, 2017. Contributions of freshwater mussels (Unionidae) to nutrient cycling in an urban river: filtration, recycling, storage, and removal. Biogeochemistry 135: 307–324.

    Article  CAS  Google Scholar 

  • Holmes, R. M., A. Aminot, R. Kérouel, B. A. Hooker & B. J. Peterson, 1999. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 56: 1801–1808.

    Article  CAS  Google Scholar 

  • Hopper, G. W., K. B. Gido, C. C. Vaughn, T. B. Parr, T. G. Popejoy, C. L. Atkinson & K. K. Gates, 2018. Biomass distribution of fishes and mussels mediates spatial and temporal heterogeneity in nutrient cycling in streams. Oecologia 188: 1133–1144.

    Article  PubMed  Google Scholar 

  • Huryn, A. D., 1990. Growth and voltinism of lotic midge larvae: patterns across an Appalachian Mountain basin. Limnology and Oceanography 35: 339–351.

    Article  Google Scholar 

  • Hölker, F., M. J. Vanni, J. J. Kuiper, C. Meile, H. P. Grossart, P. Stief, R. Adrian, A. Lorke, O. Dellwig & A. Brand, 2015. Tube-dwelling invertebrates: tiny ecosystem engineers have large effects in lake ecosystems. Ecological Monographs 85: 333–351.

    Article  Google Scholar 

  • Jackson, J. K. & B. W. Sweeney, 1995. Egg and larval development times for 35 species of tropical stream insects from Costa Rica. Journal of the North American Benthological Society 14: 115–130.

    Article  Google Scholar 

  • Karberg, N. J. & E. A. Lilleskov, 2009. White-tailed deer (Odocoileus virginianus) fecal pellet decomposition is accelerated by the invasive earthworm Lumbricus terrestris. Biological Invasions 11: 761–767.

    Article  Google Scholar 

  • Kaspari, M. & S. P. Yanoviak, 2009. Biogeochemistry and the structure of tropical brown food webs. Ecology 90: 3342–3351.

    Article  PubMed  Google Scholar 

  • Knapp, A. K., J. M. Blair, J. M. Briggs, S. L. Collins, D. C. Hartnett, L. C. Johnson & E. G. Towne, 1999. The keystone role of bison in North American tallgrass prairie—Bison increase habitat heterogeneity and alter a broad array of plant, community, and ecosystem processes. Bioscience 49: 39–50.

    Article  Google Scholar 

  • Kohler, T. J., J. N. Murdock, K. B. Gido & W. K. Dodds, 2011. Nutrient loading and grazing by the minnow Phoxinus erythrogaster shift periphyton abundance and stoichiometry in mesocosms. Freshwater Biology 56: 1133–1146.

    Article  Google Scholar 

  • Kraft, C., 1992. Estimates of phosphorus and nitrogen cycling by fish using a bioenergetics approach. Canadian Journal of Fisheries and Aquatic Sciences 49: 2596–2604.

    Article  CAS  Google Scholar 

  • Layman, C. A., J. E. Allgeier, L. A. Yeager & E. W. Stoner, 2013. Thresholds of ecosystem response to nutrient enrichment from fish aggregations. Ecology 94: 530–536.

    Article  PubMed  Google Scholar 

  • Leslie, P. & D. Davis, 1939. An attempt to determine the absolute number of rats on a given area. Journal of Animal Ecology 8: 94–113.

    Article  Google Scholar 

  • Liess, A. & H. Hillebrand, 2005. Stoichiometric variation in C:N, C:P, and N:P ratios of littoral benthic invertebrates. Journal of the North American Benthological Society 24: 256–269.

    Article  Google Scholar 

  • Martín-Torrijos, L., J. V. Sandoval-Sierra, J. Muñoz, J. Diéguez-Uribeondo, J. Bosch & J. M. Guayasamin, 2016. Rainbow trout (Oncorhynchus mykiss) threaten Andean amphibians. Neotropical Biodiversity 2: 26–36.

    Article  Google Scholar 

  • Matthews, W. J., 1998. Patterns in Freshwater Fish Ecology. Kluwer Academic Publishers, Norwell, MA.

    Book  Google Scholar 

  • McIntyre, P. B., A. S. Flecker, M. J. Vanni, J. M. Hood, B. W. Taylor & S. A. Thomas, 2008. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology 89: 2335–2346.

    Article  PubMed  Google Scholar 

  • McManamay, R. A., J. R. Webster, H. M. Valett & C. A. Dolloff, 2010. Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams. Journal of the North American Benthological Society 30: 84–102.

    Article  Google Scholar 

  • Meyer, J. L., E. T. Schultz & G. S. Helfman, 1983. Fish schools – an asset to corals. Science 220: 1047–1049.

    Article  CAS  PubMed  Google Scholar 

  • Mulholland, P. J., J. L. Tank, J. R. Webster, W. B. Bowden, W. K. Dodds, S. V. Gregory, N. B. Grimm, S. K. Hamilton, S. L. Johnson, E. Marti, W. H. McDowell, J. L. Merriam, J. L. Meyer, B. J. Peterson, H. M. Valett & W. M. Wollheim, 2002. Can uptake length in streams be determined by nutrient addition experiments? Results from an interbiome comparison study. Journal of the North American Benthological Society 21: 544–560.

    Article  Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Naiman, R. J., R. E. Bilby, D. E. Schindler & J. M. Helfield, 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5: 399–417.

    Article  Google Scholar 

  • Piniewski, M., C. Prudhomme, M. C. Acreman, L. Tylec, P. Oglęcki & T. Okruszko, 2017. Responses of fish and invertebrates to floods and droughts in Europe. Ecohydrology 10: e1793.

    Article  Google Scholar 

  • Post, D. M., 2002. The long and short of food-chain length. Trends in Ecology & Evolution 17: 269–277.

    Article  Google Scholar 

  • Power, M. E., 1990. Effects of fish in river food webs. Science 250: 811–814.

    Article  CAS  PubMed  Google Scholar 

  • Power, M., R. Lowe, P. Furey, J. Welter, M. Limm, J. Finlay, C. Bode, S. Chang, M. Goodrich & J. Sculley, 2009. Algal mats and insect emergence in rivers under Mediterranean climates: towards photogrammetric surveillance. Freshwater Biology 54: 2101–2115.

    Article  CAS  Google Scholar 

  • Roman, J. & J. J. McCarthy, 2010. The whale pump: marine mammals enhance primary productivity in a coastal basin. PLoS ONE 5: e13255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosemond, A. D., P. J. Mulholland & J. W. Elwood, 1993. Top-down and bottom-up control of stream periphyton – effects of nutrients and herbivores. Ecology 74: 1264–1280.

    Article  Google Scholar 

  • Rugenski, A. T., C. Murria & M. R. Whiles, 2012. Tadpoles enhance microbial activity and leaf decomposition in a neotropical headwater stream. Freshwater Biology 57: 1904–1913.

    Article  Google Scholar 

  • Schaus, M., W. Godwin, L. Battoe, M. Coveney, E. Lowe, R. Roth, C. Hawkins, M. Vindigni, C. Weinberg & A. Zimmerman, 2010. Impact of the removal of gizzard shad (Dorosoma cepedianum) on nutrient cycles in Lake Apopka, Florida. Freshwater Biology 55: 2401–2413.

    Article  CAS  Google Scholar 

  • Schindler, D. & B. Parker, 2002. Biological pollutants: alien fishes in mountain lakes. Water, Air and Soil Pollution: Focus 2: 379–397.

    Article  Google Scholar 

  • Small, G. E. & C. M. Pringle, 2010. Deviation from strict homeostasis across multiple trophic levels in an invertebrate consumer assemblage exposed to high chronic phosphorus enrichment in a Neotropical stream. Oecologia 162: 581–590.

    Article  PubMed  Google Scholar 

  • Small, G. E., C. M. Pringle, M. Pyron & J. H. Duff, 2011. Role of the fish Astyanax aeneus (Characidae) as a keystone nutrient recycler in low-nutrient Neotropical streams. Ecology 92: 386–397.

    Article  PubMed  Google Scholar 

  • Solorzano, L. & J. H. Sharp, 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography 25: 754–757.

    Article  CAS  Google Scholar 

  • Spooner, D. E. & C. C. Vaughn, 2006. Context-dependent effects of freshwater mussels on stream benthic communities. Freshwater Biology 51: 1016–1024.

    Article  CAS  Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Subalusky, A. L., C. L. Dutton, E. J. Rosi & D. M. Post, 2017. Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River. Proceedings of the National Academy of Sciences 114: 7647–7652.

    Article  CAS  Google Scholar 

  • Subalusky, A. L., C. L. Dutton, E. J. Rosi-Marshall & D. M. Post, 2015. The hippopotamus conveyor belt: vectors of carbon and nutrients from terrestrial grasslands to aquatic systems in sub-Saharan Africa. Freshwater Biology 60: 512–525.

    Article  CAS  Google Scholar 

  • Taylor, B. W., C. F. Keep, R. O. Hall Jr., B. J. Koch, L. M. Tronstad, A. S. Flecker & A. J. Ulseth, 2007. Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. Journal of the North American Benthological Society 26: 167–177.

    Article  Google Scholar 

  • Tomanova, S., E. Goitia & J. Helešic, 2006. Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia 556: 251–264.

    Article  Google Scholar 

  • Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Biology 43: 175–205.

    Article  Google Scholar 

  • Vanni, M. J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics 33: 341–370.

    Article  Google Scholar 

  • Vanni, M. J. & D. L. Findlay, 1990. Trophic cascades and phytoplankton community structure. Ecology 71: 921–937.

    Article  Google Scholar 

  • Vanni, M. J. & C. D. Layne, 1997. Nutrient recycling and herbivory as mechanisms in the “top–down” effect of fish on algae in lakes. Ecology 78: 21–40.

    Google Scholar 

  • Vanni, M. J. & P. B. McIntyre, 2016. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis. Ecology 97: 3460–3471.

    Article  PubMed  Google Scholar 

  • Vanni, M. J., A. S. Flecker, J. M. Hood & J. L. Headworth, 2002. Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and ecosystem processes. Ecology Letters 5: 285–293.

    Article  Google Scholar 

  • Vanni, M. J., A. M. Bowling, E. M. Dickman, R. S. Hale, K. A. Higgins, M. J. Horgan, L. B. Knoll, W. H. Renwick & R. A. Stein, 2006. Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology 87: 1696–1709.

    Article  PubMed  Google Scholar 

  • Vanni, M. J., G. Boros & P. B. McIntyre, 2013. When are fish sources versus sinks of nutrients in lake ecosystems? Ecology 94: 2195–2206.

    Article  PubMed  Google Scholar 

  • Vimos, D., A. Encalada, B. Ríos-Touma, E. Suárez & N. Prat, 2015. Effects of exotic trout on benthic communities in high-Andean tropical streams. Freshwater Science 34: 770–783.

    Article  Google Scholar 

  • Whiles, M. R., R. O. Hall, W. K. Dodds, P. Verburg, A. D. Huryn, C. M. Pringle, K. R. Lips, S. S. Kilham, C. Colon-Gaud, A. T. Rugenski, S. Peterson & S. Connelly, 2013. Disease-driven amphibian declines alter ecosystem processes in a tropical stream. Ecosystems 16: 146–157.

    Article  Google Scholar 

  • Whiles, M. R., A. D. Huryn, B. W. Taylor & J. D. Reeve, 2009. Influence of handling stress and fasting on estimates of ammonium excretion by tadpoles and fish: recommendations for designing excretion experiments. Limnology and Oceanography-Methods 7: 1–7.

    Article  CAS  Google Scholar 

  • Williamson, T. J., M. J. Vanni, M. J. González, W. H. Renwick, M. T. Bremigan & J. D. Conroy, 2018. The importance of nutrient supply by fish excretion and watershed streams to a eutrophic lake varies with temporal scale over 19 years. Biogeochemistry 140: 233–253.

    Article  CAS  Google Scholar 

  • Wilson, H. F. & M. A. Xenopoulos, 2011. Nutrient recycling by fish in streams along a gradient of agricultural land use. Global Change Biology 17: 130–139.

    Article  Google Scholar 

  • Workshop, S. S., 1990. Concepts and methods for assessing solute dynamics in stream ecosystems. Journal of the North American Benthological Society 9: 95–119.

    Article  Google Scholar 

Download references

Acknowledgements

This work would not have been possible without Daniela Cueva, Marisa Rojas, Will Roberts, and Keith Shane’s hard work in the field and lab. LeRoy Poff and Amanda Rugenski contributed to discussions regarding this work. Halvor Halvorson, Amanda Rugenski, and two anonymous reviewers provided helpful comments and suggestions on a previous version of this manuscript. Collecting permit N° 01-IC-FAU/FLO-DPAN/MA authorized by the Ministerio del Ambiente of Ecuador facilitated this work. This paper was supported by the U.S. National Science Foundation through a collaborative Dimensions of Biodiversity grant through the Division of Environmental Biology (DEB) Award Numbers: DEB-1046408, DEB-1045960, and DEB-1045991.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla L. Atkinson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Verónica Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkinson, C.L., Alexiades, A.V., MacNeill, K.L. et al. Nutrient recycling by insect and fish communities in high-elevation tropical streams. Hydrobiologia 838, 13–28 (2019). https://doi.org/10.1007/s10750-019-03973-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-03973-9

Keywords

Navigation