Skip to main content

Advertisement

Log in

Reproductive allocation by Amazon fishes in relation to feeding strategy and hydrology

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Seasonal environments favor the evolution of capital breeding, whereby reproduction uses surplus energy from resources acquired during an earlier period. Consequently, reproductive effort in capital breeders is expected to depend on traits associated with energy storage rather than environmental conditions at the time of reproduction. Based on a 15-year dataset, we investigate the effect of phenotype (body size and condition) and environmental conditions (intensity of hydrological seasons, predator density, and density of conspecifics) on fecundity three capital breeding fish species from the strongly seasonal Amazon River floodplain: Psectrogaster rutiloides, Triportheus angulatus, and Acestrorhynchus falcirostris. Fecundity of all three species was strongly correlated with phenotype and modulated by unfavorable environmental conditions during the period of reproduction, especially high density of conspecifics. Fecundity was negatively affected by the density of conspecifics for small females of A. falcirostris, and for T. angulatus females with poor body condition. Fecundity of P. rutiloides declined during periods of drought when density of conspecifics was highest. A clear tradeoff between quantity and quality of oocytes was found only for P. rutiloides. This study highlights that reproductive allocation of capital breeders in seasonal environments is strongly linked to environmental conditions before and during the reproductive period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, R. M., Y. M. Buckley & D. J. Marshall, 2008. Offspring size plasticity in response to intraspecific competition: an adaptive maternal effect across life-history stages. The American Naturalist 171: 225–237.

    Article  Google Scholar 

  • Amundsen, P.-A., R. Knudsen & A. Klemetsen, 2007. Intraspecific competition and density dependence of food consumption and growth in arctic charr. Journal of Animal Ecology 76: 149–158.

    Article  Google Scholar 

  • Barthem, R. B. & N. N. Fabré, 2004. Biologia e diversidade dos recursos pesqueiros da Amazônia, p. 17–62. In: Ruffino, M.L. (coord.). A pesca e os recursos pesqueiros na Amazônia brasileira. Ibama/Provárzea, Manaus, Brasil, 268 pp.

  • Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.

    Article  Google Scholar 

  • Bittencourt, M. M. & S. A. Amadio, 2007. Proposta para identificação rápida dos períodos hidrológicos em áreas de várzea do rio Solimões-Amazonas nas proximidades de Manaus. Acta Amazonica 3: 303–308.

    Article  Google Scholar 

  • Boyd, I. L., 2000. State-dependent fertility in pinnipeds: contrasting capital and income breeders. Functional Ecology 14: 623–630.

    Article  Google Scholar 

  • Breheny, P. & W. Burchett, 2017. Visualizing Regression Models Using Visreg. https://journal.r-project.org/archive/2017/RJ-2017-046/index.html

  • Brito, J. G., L. F. Alves & H. M. V. Espirito Santo, 2014. Seasonal and spatial variations in limnological conditions of a floodplain lake (Lake Catalão) connected to both the Solimões and Negro rivers, Central Amazonia. Acta Amazonica 44: 121–134.

    Article  Google Scholar 

  • Brosset, P., J. Lloret, M. Muñoz, C. Fauvel, E. Van Beveren, V. Marques, J.-M. Fromentin, F. Ménard & C. Saraux, 2016. Body reserves mediate trade-offs between life-history traits: new insights from small pelagic fish reproduction. Royal Society Open Science 3: 160202.

    Article  Google Scholar 

  • Brown-Peterson, N. J., D. M. Wyanski, F. Saborido-Rey, B. J. Macewicz & S. K. Lowerre-Barbieri, 2011. A standardized terminology for describing reproductive development in fishes. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 3: 52–70.

    Article  Google Scholar 

  • Byström, P. & E. García-Berthou, 1999. Density dependent growth and size specific competitive interactions in young fish. Oikos 86: 217–232.

    Article  Google Scholar 

  • Cam, E., W. A. Link, E. G. Cooch, J. Y. Monnat & E. Danchin, 2002. Individual covariation in life-history traits: seeing the trees despite the forest. The American Naturalist 159: 96–105.

    PubMed  Google Scholar 

  • Claro-Junior, L., E. Ferreira, J. Zuanon & C. Araújo-Lima, 2004. O efeito da floresta alagada na alimentação de três espécies de peixes onívoros em lagos de várzea da Amazônia Central, Brasil. Acta Amazonica 34: 133–137.

    Article  Google Scholar 

  • Clutton-Brock, T. H., I. R. Stevenson, P. Marrow, A. D. Maccoll, A. I. Houston & J. M. McNamara, 1996. Population fluctuations, reproductive costs and life-history tactics in female soay sheep. Journal of Animal Ecology 65: 675–689.

    Article  Google Scholar 

  • Correa, S. B. & K. O. Winemiller, 2014. Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95: 10–224.

    Article  Google Scholar 

  • Correia, G. B., F. K. Siqueira-Souza & C. E. C. Freitas, 2014. Intra- and inter-annual changes in the condition factors of three Curimatidae detritivores from Amazonian floodplain lakes. Biota Neotropica 1: 7–15.

    Google Scholar 

  • Dantzer, B., A. E. Newman, R. Boonstra, R. Palme, S. Boutin, M. M. Humphries & A. G. McAdam, 2013. Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science 340: 1215–2117.

    Article  CAS  Google Scholar 

  • Depczynski, M., C. J. Fulton, M. J. Marnane & D. R. Bellwood, 2007. Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153: 111–120.

    Article  Google Scholar 

  • Descamps, S., J. M. Gaillard, S. Hamel & N. G. Yoccoz, 2016. When relative allocation depends on total resource acquisition: implication for the analysis of trade-offs. Jorunal of Evolutionary Biology 29: 1860–1866.

    Article  CAS  Google Scholar 

  • Dutil, J.-D., 1989. Energetic constraints and spawning interval in the anadromous arctic charr (Salvelinus alpinus). Copeia 1986: 945–955.

    Article  Google Scholar 

  • Ejsmond, M. J., Ø. Varpe, M. Czarnoleski & J. Kozłowski, 2015. Seasonality in offspring value and trade-offs with growth explain capital breeding. The American Naturalist 186: E111–E125.

    Article  Google Scholar 

  • Ferreira, E., J. Zuanon & G. M. Santos, 1998. Peixes Comerciais do Médio Amazonas Região de Santarém—PA. IBAMA, Brasília: 211 p.

    Google Scholar 

  • Festa-Bianchet, M., J. M. Gaillard & J. T. Jorgenson, 1998. Mass- and density-dependent reproductive success and reproductive costs in a capital breeder. The American Naturalist 152: 367–379.

    CAS  PubMed  Google Scholar 

  • França, G. F., H. J. Grier & I. Quagio-Grassiotto, 2010. A new vision of the origin and the oocyte development in the ostariophysi applied to Gymnotus sylvius (Teleostei, Gymnotiformes). Neotropical Ichthyology 8: 787–804.

    Article  Google Scholar 

  • Frappart, F., F. Papa, J. S. Silva, G. Ramillien, C. Prigent, F. Seyler & S. Calmant, 2012. Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environment Research Letters 7: 044010.

    Article  Google Scholar 

  • Garcia-Vasquez, A., G. Vargas, H. Sánchez, S. Tello & F. Duponchelle, 2015. Periodic life history strategy of Psectrogaster rutiloides, Kner 1858, in the Iquitos region, Peruvian Amazon. Journal of Applied Ichthyology 31: 31–39.

    Article  Google Scholar 

  • Garnier, A., J. M. Gaillard, D. Gauthier & A. Besnard, 2016. What shapes fitness costs of reproduction in long-lived iteroparous species? A case study on the Alpine ibex. Ecology 97: 205–214.

    Article  Google Scholar 

  • Hamel, S., S. D. Côté & M. Festa-Bianchet, 2010. Maternal characteristics and environment affect the costs of reproduction in female mountain goats. Ecology 91: 2034–2043.

    Article  Google Scholar 

  • Hothorn, T., F. Bretz & P. Westfall, 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363.

    Article  Google Scholar 

  • Houston, A. I. & J. N. McNamara, 1992. Phenotypic plasticity as a state-dependent life-history decision. Evolutionary Ecology 6: 243–253.

    Article  Google Scholar 

  • Jakob, E. M., S. D. Marshall & G. W. Uetz, 1996. Estimating fitness: a comparison of body condition indices. Oikos 77: 61–67.

    Article  Google Scholar 

  • Johansson, F. & L. Rowe, 1999. Life history and behavioral responses to time constraints in a damselfly. Ecology 80: 1242–1252.

    Article  Google Scholar 

  • Johnson, R. B., 2009. Lipid deposition in oocytes of teleost fish during secondary oocyte growth. Reviews in Fisheries Science 17: 78–89.

    Article  Google Scholar 

  • Jönsson, K. I., 1997. Capital and income breeding as alternative tactics of resource use in reproduction. Oikos 78: 57–66.

    Article  Google Scholar 

  • Junk, W. J., 1985. Temporary fat storage, an adaptation of some fish species to the river level fluctuations and related environmental changes of the Amazon River. Amazoniana 9: 315–351.

    Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river—floodplain systems. Special Publication of the Canadian Journal of Fisheries and Aquatic Sciences 106: 10–127.

    Google Scholar 

  • Lescroël, A., K. M. Dugger, G. Ballard & D. G. Ainley, 2009. Effects of individual quality, reproductive success and environmental variability on survival of a long-lived seabird. Journal of Animal Ecology 78: 798–806.

    Article  Google Scholar 

  • Lourdais, O., X. Bonnet, R. Shine, D. DeNardo, G. Naulleau & M. Guillon, 2002. Capital-breeding and reproductive effort in a variable environment: a longitudinal study of a viviparous snake. Journal of Animal Ecology 71: 470–479.

    Article  Google Scholar 

  • Lowe-McConnell, R. H., 1987. Ecological Studies in Tropical Fish Communities. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Lowerre-Barbieri, S. K., N. J. Brown-Peterson, H. Murua, J. Tomkiewicz, D. Wyanski & F. Saborido-Rey, 2011. Emerging issues and methodological advances in fisheries reproductive biology. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 3: 32–51.

    Article  Google Scholar 

  • McBride, R. S., S. Somarakis, G. R. Fitzhugh, A. Albert, N. A. Yaragina, M. J. Wuenschel, A. Alonso-Fernandez & G. Basilone, 2015. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish and Fisheries 16: 26–57.

    Article  Google Scholar 

  • Menezes, N. A. & A. E. A. D. M. Vazzoler, 1992. Reproductive characteristics of characiformes. In Hamlett, W. C. (ed.), Reproductive Biology of South American Vertebrates. Springer, Berlin: 60–70.

    Chapter  Google Scholar 

  • Murua, H. & F. Saborido-Rey, 2003. Female reproductive strategies of marine fish species of the north Atlantic. Journal of Northwest Atlantic Fisheries Science 33: 23–31.

    Article  Google Scholar 

  • Neves dos Santos, R., E. Ferreira & S. Amadio, 2008. Effect of seasonality and trophic group on energy acquisition in Amazonian fish. Ecology of Freshwater Fish 17: 340–348.

    Article  Google Scholar 

  • Neves dos Santos, R., E. Ferreira & S. Amadio, 2010. Patterns of energy allocation to reproduction in three Amazonian fish species. Neotropical Ichthyology 8: 155–161.

    Article  Google Scholar 

  • Pinot, A., B. Gauffre & V. Bretagnolle, 2014. The interplay between seasonality and density: consequences for female breeding decisions in a small cyclic herbivore. BMC Ecology 14: 17.

    Article  Google Scholar 

  • Plaistow, S. J. & T. G. Benton, 2009. The influence of context-dependent maternal effects on population dynamics: an experimental test. Philosophical Transactions of the Royal Society B 364: 1049–1058.

    Article  CAS  Google Scholar 

  • Prestes, L., M. G. M. Soares, F. R. Silva & M. M. Bittencourt, 2010. Dynamic population from Triportheus albus, T. angulatus and T. auritus (Characiformes: Characidae) in Amazonian Central lakes. Biota Neotropical 10: 177–181.

    Article  Google Scholar 

  • R Development Core Team, 2016. R: a language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-projectorg

  • Reznick, D. N. & A. P. Yang, 1993. The influence of fluctuating resources on life history: patterns of allocation and plasticity in female guppies. Ecology 74: 2011–2019.

    Article  Google Scholar 

  • Rideout, R. M. & J. Tomkiewicz, 2011. Skipped spawning in fishes: more common than you might think. Marine and Coastal Fisheries 3: 176–189.

    Article  Google Scholar 

  • Robert, A., M. Bolton, F. Jiguet & J. Bried, 2015. The survival–reproduction association becomes stronger when conditions are good. Proceedings Royal Society B 282: 20151529.

    Article  Google Scholar 

  • Rodríguez, M. A. & W. M. Lewis Jr., 1994. Regulation and stability in fish assemblages of neotropical floodplain lakes. Oecologia 99: 166–180.

    Article  Google Scholar 

  • Rollinson, N. & J. A. Hutchings, 2013. Environmental quality predicts optimal egg size in the wild. The American Naturalist 182: 76–90.

    Article  Google Scholar 

  • Röpke, C. P., E. Ferreira & J. Zuanon, 2014. Seasonal changes in the use of feeding resources by fish in stands of aquatic macrophytes in an Amazonian floodplain Brazil. Environmental Biology of Fishes 97: 401–414.

    Article  Google Scholar 

  • Röpke, C. P., S. Amadio, K. O. Winemiller & J. Zuanon, 2016. Seasonal dynamics of the fish assemblage in a floodplain lake at the confluence of the Negro and Amazon Rivers. Journal of Fish Biology 89: 194–212.

    Article  Google Scholar 

  • Röpke, C. P., A. Amadio, J. Zuanon, E. Ferreira, C. P. Deus, T. H. S. Pires & K. O. Winemiller, 2017. Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon. Scientific Reports 7: 40170.

    Article  Google Scholar 

  • Sánchez-Botero, J. I. & C. Araújo-Lima, 2001. As macrófitas como berçário para a ictiofauna da várzea do rio Amazonas. Acta Amazonica 31: 437–447.

    Article  Google Scholar 

  • Sibly, R. M. & P. Calow, 1989. A life-cycle theory of responses to stress. Biological Journal of the Linnean Society 37: 101–116.

    Article  Google Scholar 

  • Stearns, S. C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford.

    Google Scholar 

  • Stephens, P. A., I. L. Boyd, J. M. McNamara & A. I. Houston, 2009. Capital breeding and income breeding: their meaning, measurement, and worth. Ecology 90: 2057–2067.

    Article  Google Scholar 

  • Stephens, P. A., A. I. Houston, K. C. Harding, I. L. Boyd & J. M. McNamara, 2014. Capital and income breeding: the role of food supply. Ecology 95: 882–896.

    Article  Google Scholar 

  • Varpe, Ø., 2017. Life history adaptations to seasonality. Integrative and Comparative Biology 57: 943–960.

    Article  Google Scholar 

  • Varpe, Ø., C. Jørgensen, G. A. Tarling & Ø. Fiksen, 2009. The adaptive value of energy storage and capital breeding in seasonal environments. Oikos. https://doi.org/10.1111/j.1600-0706.2008.17036.x.

    Article  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S-plus. Springer, New York.

    Book  Google Scholar 

  • Winemiller, K. O., 1989. Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81: 225–241.

    Article  Google Scholar 

  • Winemiller, K. O. & D. B. Jepsen, 1998. Effects of seasonality and fish movement on tropical river food webs. Journal of Fish Biology 53: 267–296.

    Article  Google Scholar 

  • Wright, P. J., J. E. Orpwood & B. E. Scott, 2017. Impact of rising temperature on reproductive investment in a capital breeder: the lesser sandeel. Journal of Experimental Marine Biology and Ecology 486: 52–58.

    Article  Google Scholar 

  • Yamamoto, K. C., M. G. M. Soares & C. E. C. Freitas, 2004. Alimentação de Triportheus angulatus (Spix & Agassiz, 1829) no lago Camaleão, Manaus, AM, Brasil. Acta Amazonica 34: 653–659.

    Article  Google Scholar 

  • Zurr, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgements

We thank the students, volunteers, fishermen, and Raimundo Sotero who helped in the field and laboratory over more than one decade of study. We also thank the two anonymous reviewers and Joel Trexler for their valuable comments.

Funding

This study was funded by the Amazonas State Research Funding Agency (FAPEAM 062003342013), Brazilian National Council for Scientific and Technological Development (CNPq) (575738/2008-1), National Institute for Amazonian Research (INPA), and US National Science Foundation (DEB 1257813). CPR, THSP, and DDWF received fellowships from CNPq and/or Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

CPR, KW, and SA conceived the idea; CPR, DWF, CPD, and SA obtained the data; CPR and THSP analyzed the data; CPR, THSP, and KW wrote the manuscript; and all authors provided editorial advice. All authors contributed significantly to the paper and approved the submitted version.

Corresponding author

Correspondence to Cristhiana P. Röpke.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

All applicable institutional guidelines for the care and use of animals were followed, INPA’s ethics committee rules (Protocol Number 33/2012). Fish surveys were authorized by IBAMA through license #101932, and followed.

Additional information

Handling editor: Eric Larson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 437 kb)

Supplementary material 2 (TXT 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röpke, C.P., Pires, T.H.S., Winemiller, K.O. et al. Reproductive allocation by Amazon fishes in relation to feeding strategy and hydrology. Hydrobiologia 826, 291–305 (2019). https://doi.org/10.1007/s10750-018-3740-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3740-7

Keywords

Navigation