Skip to main content

Advertisement

Log in

Water temperature dynamics and the prevalence of daytime stratification in small temperate shallow lakes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Small lakes are understudied compared to medium- and large-sized lakes, but have recently received increased attention due to their abundance and importance for global scale biogeochemical cycles. They have close terrestrial contact, extensive environmental variability, and support high biodiversity among them. Temporal and spatial variability of water temperature, oxygen, and stratification–mixing dynamics were examined during a year in nine small Danish lakes. We found that diel mean surface water temperatures were similar among lakes while the diel range decreased with increasing water depth. Vertical temperature stratification occurred on 47% of the days during the entire year and 64% of summer days, usually with daytime stratification and nocturnal convective mixing. The probability of daytime stratification increased with higher incident irradiance, higher air temperature, and lower wind speed. During spring, daytime stratification caused differences in oxygen saturation between surface and bottom waters. These findings offer new insights on the high variability of water temperature and oxygen in time and space in small temperate shallow lakes. The variable water temperature and the regular stratification–mixing processes will have a pronounced influence on biogeochemical cycles. Also, these features are expected to affect the performance and evolutionary process of organisms associated with small lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen, M. R., T. Kragh & K. Sand-Jensen, 2017a. Extreme diel oxygen and carbon cycles in shallow vegetated lakes. Proceedings of the Royal Society B 284: 20171427.

    Article  Google Scholar 

  • Andersen, M. R., K. Sand-Jensen, R. Iestyn Woolway & I. D. Jones, 2017b. Profound daily vertical stratification and mixing in a small, shallow, wind-exposed lake with submerged macrophytes. Aquatic Sciences 79: 395–406.

    Article  CAS  Google Scholar 

  • Bates, D., M. Mächler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  • Biggs, J., S. von Fumetti & M. Kelly-Quinn, 2017. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793: 3–39.

    Article  Google Scholar 

  • Boehrer, B. & M. Schultze, 2008. Stratification of lakes. Reviews of Geophysics 46: RG2005.

    Article  Google Scholar 

  • Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J.-S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.

    Article  Google Scholar 

  • Branco, B. F. & T. Torgersen, 2009. Predicting the onset of thermal stratification in shallow inland waterbodies. Aquatic Sciences 71: 65–79.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York.

    Google Scholar 

  • Christensen, J., K. Sand-Jensen & P. A. Staehr, 2013. Fluctuating water levels control water chemistry and metabolism of a charophyte-dominated pond. Freshwater Biology 58: 1353–1365.

    Article  CAS  Google Scholar 

  • Condie, S. A. & I. T. Webster, 2002. Stratification and circulation in a shallow turbid waterbody. Environmental Fluid Mechanics 2: 177–196.

    Article  Google Scholar 

  • Dale, H. M. & T. J. Gillespie, 1977. Influence of submersed aquatic plants on temperature-gradients in shallow-water bodies. Canadian Journal of Botany 55: 2216–2225.

    Article  Google Scholar 

  • DMI, 2016. Danish Meterological Institute. http://www.dmi.dk/vejr/arkiver/vejrarkiv/ Accessed June 2016.

  • Downing, J. A., 2010. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29: 9–24.

    Google Scholar 

  • Downing, J., Y. Prairie, J. Cole, C. Duarte, L. Tranvik, R. Striegl, W. McDowell, P. Kortelainen, N. Caraco & J. Melack, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.

    Article  Google Scholar 

  • Fee, E., R. Hecky, S. Kasian & D. Cruikshank, 1996. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnology and Oceanography 41: 912–920.

    Article  CAS  Google Scholar 

  • Ford, P. W., P. I. Boon & K. Lee, 2002. Methane and oxygen dynamics in a shallow floodplain lake: the significance of periodic stratification. Hydrobiologia 485: 97–110.

    Article  CAS  Google Scholar 

  • Giling, D. P., P. A. Staehr, H. P. Grossart, M. R. Andersen, B. Boehrer, C. Escot, F. Evrendilek, L. Gómez-Gener, M. Honti, I. D. Jones, N. Karakaya, A. Laas, E. Moreno-Ostos, K. Rinke, U. Scharfenberger, S. R. Schmidt, M. Weber, R. I. Woolway, J. A. Zwart & B. Obrador, 2017. Delving deeper: metabolic processes in the metalimnion of stratified lakes. Limnology and Oceanographyn/a-n/a. https://doi.org/10.1002/lno.10504.

    Article  Google Scholar 

  • Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage & E. L. Charnov, 2001. Effects of size and temperature on metabolic rate. Science 293: 2248–2251.

    Article  CAS  Google Scholar 

  • Gorham, E. & F. M. Boyce, 1989. Influence of lake surface-area and depth upon thermal stratification and the depth of the summer thermocline. Journal of Great Lakes Research 15: 233–245.

    Article  Google Scholar 

  • Gran, G., 1952. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 77: 661–671.

    Article  CAS  Google Scholar 

  • Herb, W. R. & H. G. Stefan, 2004. Temperature stratification and mixing dynamics in a shallow lake with submersed macrophytes. Lake and Reservoir Management 20: 296–308.

    Article  Google Scholar 

  • Herb, W. R. & H. G. Stefan, 2005. Dynamics of vertical mixing in a shallow lake with submersed macrophytes. Water Resources Research 41: W02023.

    Article  Google Scholar 

  • Holgerson, M. A., 2015. Drivers of carbon dioxide and methane supersaturation in small, temporary ponds. Biogeochemistry 124: 305–318.

    Article  CAS  Google Scholar 

  • Holgerson, M. A. & P. A. Raymond, 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience 9: 222–226.

    Article  CAS  Google Scholar 

  • Holgerson, M. A., C. J. Zappa & P. A. Raymond, 2016. Substantial overnight reaeration by convective cooling discovered in pond ecosystems. Geophysical Research Letters 43: 8044–8051.

    Article  Google Scholar 

  • Imberger, J., 1985. The diurnal mixed layer. Limnology and Oceanography 30: 737–770.

    Article  Google Scholar 

  • Iversen, T. M., 1971. The ecology of a mosquito population (Aedes communis) in a temporary pool in a Danish beech wood. Archiv für Hydrobiologie 69: 309–332.

    Google Scholar 

  • Jespersen, A.-M. & K. Christoffersen, 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109: 445–454.

    CAS  Google Scholar 

  • Kalff, J., 2002. Limnology: Inland Water Ecosystems. Prentice Hall, New Jersey.

    Google Scholar 

  • Kragh, T., M. R. Andersen & K. Sand-Jensen, 2017. Profound afternoon depression of ecosystem production and nighttime decline of respiration in a macrophyte-rich, shallow lake. Oecologia 185: 157–170.

    Article  Google Scholar 

  • Livingstone, D. M., A. F. Lotter & I. R. Walker, 1999. The decrease in summer surface water temperature with altitude in Swiss Alpine lakes: a comparison with air temperature lapse rates. Arctic, Antarctic, and Alpine Research 31: 341–352.

    Article  Google Scholar 

  • Losordo, T. M. & R. H. Piedrahita, 1991. Modelling temperature variation and thermal stratification in shallow aquaculture ponds. Ecological Modelling 54: 189–226.

    Article  Google Scholar 

  • Laas, A., F. Cremona, P. Meinson, E.-I. Rõõm, T. Nõges & P. Nõges, 2016. Summer depth distribution profiles of dissolved CO2 and O2 in shallow temperate lakes reveal trophic state and lake type specific differences. Science of the Total Environment 566: 63–75.

    Article  Google Scholar 

  • Macan, T. T. & R. Maudsley, 1966. The temperature of a moorland fishpond. Hydrobiologia 27: 1–22.

    Article  Google Scholar 

  • MacIntyre, S., 1993. Vertical mixing in a shallow, eutrophic lake: possible consequences for the light climate of phytoplankton. Limnology and Oceanography 38: 798–817.

    Article  Google Scholar 

  • Markfort, C. D., A. L. Perez, J. W. Thill, D. A. Jaster, F. Porté-Agel & H. G. Stefan, 2010. Wind sheltering of a lake by a tree canopy or bluff topography. Water Resources Research. https://doi.org/10.1029/2009wr007759.

    Article  Google Scholar 

  • Martin, N. A., 1972. Temperature fluctuations within English lowland ponds. Hydrobiologia 40: 455–470.

    Article  Google Scholar 

  • Martinsen, K. T., M. R. Andersen, T. Kragh & K. Sand-Jensen, 2017. High rates and close diel coupling of primary production and ecosystem respiration in small, oligotrophic lakes. Aquatic Sciences 79: 995–1007.

    Article  CAS  Google Scholar 

  • R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Rahel, F. J. & C. S. Kolar, 1990. Trade-offs in the response of mayflies to low oxygen and fish predation. Oecologia 84: 39–44.

    Article  Google Scholar 

  • Read, J. S., D. P. Hamilton, A. R. Desai, K. C. Rose, S. MacIntyre, J. D. Lenters, R. L. Smyth, P. C. Hanson, J. J. Cole & P. A. Staehr, 2012. Lake-size dependency of wind shear and convection as controls on gas exchange. Geophysical Research Letters. https://doi.org/10.1029/2012gl051886.

    Article  Google Scholar 

  • Sand-Jensen, K. & P. A. Staehr, 2007. Scaling of pelagic metabolism to size, trophy and forest cover in small Danish lakes. Ecosystems 10: 128–142.

    Article  Google Scholar 

  • Scheffer, M., G. J. van Geest, K. Zimmer, E. Jeppesen, M. Søndergaard, M. G. Butler, M. A. Hanson, S. Declerck, L. de Meester & L. Persson, 2006. Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112: 227–231.

    Article  Google Scholar 

  • University of Copenhagen, 1992. Limnological Methods (in danish). Akademisk Forlag.

  • Vad, C. F., Z. Horváth, K. T. Kiss, B. Tóth, A. L. Péntek & É. Ács, 2013. Vertical distribution of zooplankton in a shallow peatland pond: the limiting role of dissolved oxygen. International Journal of Limnology 49: 275–285.

    Article  Google Scholar 

  • Vadeboncoeur, Y., G. Peterson, M. J. Vander Zanden & J. Kalff, 2008. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89: 2542–2552.

    Article  Google Scholar 

  • Verpoorter, C., T. Kutser, D. A. Seekell & L. J. Tranvik, 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters 41: 6396–6402.

    Article  Google Scholar 

  • Vilas, M. P., C. L. Marti, M. P. Adams, C. E. Oldham & M. R. Hipsey, 2017. Invasive macrophytes control the spatial and temporal patterns of temperature and dissolved oxygen in a shallow lake: a proposed feedback mechanism of macrophyte loss. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.02097.

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams, P., M. Whitfield, J. Biggs, S. Bray, G. Fox, P. Nicolet & D. Sear, 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115: 329–341.

    Article  Google Scholar 

  • Woolway, R., I. Jones, H. Feuchtmayr & S. Maberly, 2015a. A comparison of the diel variability in epilimnetic temperature for five lakes in the English Lake District. Inland Waters 5: 139–154.

    Article  Google Scholar 

  • Woolway, R. I., I. D. Jones, D. P. Hamilton, S. C. Maberly, K. Muraoka, J. S. Read, R. L. Smyth & L. A. Winslow, 2015b. Automated calculation of surface energy fluxes with high-frequency lake buoy data. Environmental Modelling & Software 70: 191–198.

    Article  Google Scholar 

  • Woolway, R. I., I. D. Jones, S. C. Maberly, J. R. French, D. M. Livingstone, D. T. Monteith, G. L. Simpson, S. J. Thackeray, M. R. Andersen, R. W. Battarbee, C. L. DeGasperi, C. D. Evans, E. de Eyto, H. Feuchtmayr, D. P. Hamilton, M. Kernan, J. Krokowski, A. Rimmer, K. C. Rose, J. A. Rusak, D. B. Ryves, D. R. Scott, E. M. Shilland, R. L. Smyth, P. A. Staehr, R. Thomas, S. Waldron & G. A. Weyhenmeyer, 2016. Diel surface temperature range scales with lake size. PLoS ONE 11: e0152466.

    Article  Google Scholar 

  • Yvon-Durocher, G., J. M. Caffrey, A. Cescatti, M. Dossena, P. del Giorgio, J. M. Gasol, J. M. Montoya, J. Pumpanen, P. A. Staehr & M. Trimmer, 2012. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487: 472–476.

    Article  CAS  Google Scholar 

  • Zuur, A. F., E. N. Ieno & C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14.

    Article  Google Scholar 

Download references

Acknowledgements

We thank for grant support from the COWI-Foundation and the Carlsberg Foundation to Kaj Sand-Jensen to the study of environmental and biological dynamics in small lakes, Lars Lønsmann Iversen for help with statistical analyses, and Søren Thromsholdt Christensen and Mads Burchardt Mundt for assistance with field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Thorø Martinsen.

Additional information

Handling editor: Mariana Meerhoff

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1076 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinsen, K.T., Andersen, M.R. & Sand-Jensen, K. Water temperature dynamics and the prevalence of daytime stratification in small temperate shallow lakes. Hydrobiologia 826, 247–262 (2019). https://doi.org/10.1007/s10750-018-3737-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3737-2

Keywords

Navigation