Skip to main content
Log in

Spatio-temporal distribution pattern of the picocyanobacterium Synechococcus in lakes of different trophic states: a comparison of flow cytometry and sequencing approaches

  • 20TH IAC SYMPOSIUM
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In this study, we aimed to investigate the spatio-temporal distribution patterns of the picocyanobacterium Synechococcus, an important contributor to primary production in many freshwater lakes. Our study sites were four lakes with different trophic states within the Osterseen Lake District in Southern Germany. Flow cytometry counts and next-generation sequencing were used from April to October 2015 to analyse the occurrence of Synechococcus and heterotrophic prokaryotes in relation to physical and chemical habitat properties. Synechococcus was identified as the main representative of the autotrophic picoplankton, but cell counts varied widely. The Synechococcus taxa identified by flow cytometry were confirmed by sequencing data, but the comparison of the flow cytometry counts and sequence data revealed discrepancies for cells in the exponential phase. The eutrophic Lake Schiffhuettensee was dominated by algae and had the highest abundance of heterotrophic prokaryotes. The presence of distinct operational taxonomic units of Synechococcus varied seasonally and was lake-specific, indicating local niche adaptation. Our study sheds light on the ecology of these important primary producers in freshwater systems. Furthermore, the discrepancy observed with the direct comparison of the widely used methods of next-generation sequencing and flow cytometry should serve as a caveat for future data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allgaier, M. & H.-P. Grossart, 2006. Diversity and seasonal dynamics of actinobacteria populations in four lakes in Northeastern Germany. Applied and Environmental Microbiology 72: 3489–3497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callieri, C., 2008. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwater Reviews 1: 1–28.

    Article  Google Scholar 

  • Callieri, C., 2010. Single cells and microcolonies of freshwater picocyanobacteria: a common ecology. Journal of Limnology 69: 257–277.

    Article  Google Scholar 

  • Callieri, C. & J. G. Stockner, 2002. Freshwater autotrophic picoplankton: a review. Journal of Limnology 61: 1–14.

    Article  Google Scholar 

  • Chen, J., P. Xie, L. Guo, L. Zheng & L. Ni, 2005. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in a freshwater snail (Bellamya aeruginosa) from a large shallow, eutrophic lake of the subtropical China. Environmental Pollution 134: 423–430.

    Article  CAS  PubMed  Google Scholar 

  • Chiang, K.-P., M.-C. Kuo, J. Chang, R.-H. Wang & G.-C. Gong, 2002. Spatial and temporal variation of the Synechococcus population in the East China Sea and its contribution to phytoplankton biomass. Continental Shelf Research 22: 3–13.

    Article  Google Scholar 

  • Chisholm, S. W., R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury & N. A. Welschmeyer, 1988. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334: 340–343.

    Article  Google Scholar 

  • Choi, D. H., J. H. Noh & J. Shim, 2013. Seasonal changes in picocyanobacterial diversity as revealed by pyrosequencing in temperate waters of the East China Sea and the East Sea. Aquatic Microbial Ecology 71: 75–90.

    Article  Google Scholar 

  • Coutinho, F., D. A. Tschoeke, F. Thompson & C. Thompson, 2016. Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus. PeerJ 4: e1522.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crump, B. C., C. S. Hopkinson, M. L. Sogin & J. E. Hobbie, 2004. Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Applied and Environmental Microbiology 70: 1494–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DEV, 2013. Deutsche Einheitsverfahren zur Wasser, Abwasser und Schlammuntersuchung (German Standard Methods for the Examination of Water, Wastewater and Sludge). DIN Wasserchemische Gesellschaft, GDCh. Wiley-VCH, Weilheim.

    Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2012. Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia 698: 29–46.

    Article  CAS  Google Scholar 

  • Edgar, R. C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R. C., B. J. Haas, J. C. Clemente, C. Quince & R. Knight, 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eiler, A. & S. Bertilsson, 2004. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environmental Microbiology 6: 1228–1243.

    Article  PubMed  Google Scholar 

  • Garneau, M.-È., T. Posch, G. Hitz, F. Pomerleau, C. Pradalier, R. Siegwart & J. Pernthaler, 2013. Short-term displacement of Planktothrix rubescens (cyanobacteria) in a pre-alpine lake observed using an autonomous sampling platform. Limnology and Oceanography 58: 1892–1906.

  • Greisberger, S., M. T. Dokulil & K. Teubner, 2008. A comparison of phytoplankton size-fractions in Mondsee, an alpine lake in Austria: distribution, pigment composition and primary production rates. Aquatic Ecology 42: 379–389.

    Article  CAS  Google Scholar 

  • Griese, M., C. Lange & J. Soppa, 2011. Ploidy in cyanobacteria. FEMS Microbiology Letters 323: 124–131.

    Article  CAS  PubMed  Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological Statistics Software Package for education and data analysis. Palaeontolia Electronica 4: 1–92.

    Google Scholar 

  • Hartmann, M., P. Gomez-Pereira, C. Grob, M. Ostrowski, D. J. Scanlan & M. V. Zubkov, 2014. Efficient CO2 fixation by surface Prochlorococcus in the Atlantic Ocean. The ISME Journal 8: 2280–2289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawley, G. R. W. & B. A. Whitton, 1991. Seasonal Changes in Chlorophyll-containing Picoplankton Populations of Ten Lakes in Northern England. Internationale Revue der gesamten Hydrobiologie und Hydrographie 76: 545–554.

    Article  Google Scholar 

  • Jezberová, J. & J. Komárková, 2007. Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environmental Microbiology 9: 1858–1862.

    Article  PubMed  Google Scholar 

  • Kana, T. M. & P. M. Glibert, 1987. Effect of irradiances up to 2000 μE m−2 s−1 on marine Synechococcus WH7803—I. Growth, pigmentation, and cell composition. Deep Sea Research Part A Oceanographic Research Papers 34: 479–495.

    Article  CAS  Google Scholar 

  • Klindworth, A., E. Pruesse, T. Schweer, J. Peplies, C. Quast, M. Horn & F. O. Glöckner, 2012. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41(1): e1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Komárek, J., 2016. Review of the cyanobacterial genera implying planktic species after recent taxonomic revisions according to polyphasic methods: state as of 2014. Hydrobiologia 764: 259–270.

    Article  Google Scholar 

  • Komárek, J., J. Kaštovský & J. Jezberová, 2011. Phylogenetic and taxonomic delimitation of the cyanobacterial genus Aphanothece and description of Anathece gen. nov. European Journal of Phycology 46: 315–326.

    Article  Google Scholar 

  • Lavin, P. L. & S. O. Lourenço, 2005. An evaluation of the accumulation of intracellular inorganic nitrogen pools by marine microalgae in batch cultures. Brazilian Journal of Oceanography 53: 55–68.

    Article  Google Scholar 

  • Li, W. K. W., 1994. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnology and Oceanography 39: 169–175.

    Article  CAS  Google Scholar 

  • Li, W. K. W., S. Rao, W. G. Harrison, J. C. Smith, J. J. Cullen, B. Irwin & T. Platt, 1983. Autotrophic picoplankton in the tropical ocean. Science 219: 292–295.

    Article  CAS  PubMed  Google Scholar 

  • Lindström, E. S. & E. Leskinen, 2002. Do neighboring lakes share common taxa of bacterioplankton? Comparison of 16S rDNA fingerprints and sequences from three geographic regions. Microbial Ecology 44: 1–9.

    Article  PubMed  Google Scholar 

  • Liu, H., H. A. Nolla & L. Campbell, 1997. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquatic Microbial Ecology 12: 39–47.

    Article  Google Scholar 

  • Maeda, H., A. Kawai & M. M. Tilzer, 1992. The water bloom of cyanobacterial picoplankton in Lake Biwa, Japan. Hydrobiologia 248: 93–103.

    Article  Google Scholar 

  • Marie, D., F. Partensky, S. Jacquet & D. Vaulot, 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology 63: 186–193.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melzer, A., 1999. Aquatic macrophytes as tools for lake management. Hydrobiologia 396: 181–190.

    Article  Google Scholar 

  • Navone, R., 1964. The determination of nitrate. JAmerWater Works Ass 56: 781–783.

    Article  CAS  Google Scholar 

  • Newton, R. J., S. E. Jones, A. Eiler, K. D. McMahon & S. Bertilsson, 2011. A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews 75: 14–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pernthaler, J., B. Sattler, K. Simek, A. Schwarzenbacher & R. Psenner, 1996. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquatic Microbial Ecology 10: 255–263.

    Article  Google Scholar 

  • Porter, J., D. Deere, M. Hardman, C. Edwards & R. Pickup, 1997. Go with the flow–use of flow cytometry in environmental microbiology. FEMS Microbiology Ecology 24: 93–101.

    Article  CAS  Google Scholar 

  • Pruesse, E., J. Peplies & F. O. Glöckner, 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruber, J., F. R. Bauer, A. D. Millard, U. Raeder, J. Geist & K. Zwirglmaier, 2016. Synechococcus diversity along a trophic gradient in the Osterseen Lake District, Bavaria. Microbiology 162: 2053–2063.

    Article  CAS  PubMed  Google Scholar 

  • Schalles, J. F., A. A. Gitelson, Y. Z. Yacobi & A. E. Kroenke, 1998. Estimation of chlorophyll a from time Series measurements of high spectral resolution reflectance in an eutrophic lake. Journal of Phycology 34: 383–390.

    Article  Google Scholar 

  • Sime-Ngando, T., 1995. Population dynamics of autotrophic picoplankton in relation to environmental factors in a productive lake. Aquatic Sciences 57: 91–105.

    Article  Google Scholar 

  • Søndergaard, M., 1991. Phototrophic picoplankton in temperate lakes: seasonal abundance and importance along a trophic gradient. Internationale Revue der gesamten Hydrobiologie und Hydrographie 76: 505–522.

    Article  Google Scholar 

  • Steinberg, C. E. W. & H. M. Hartmann, 1988. Planktonic bloom-forming cyanobacteria and the eutrophication of lakes and rivers. Freshwater Biology 20: 279–287.

    Article  Google Scholar 

  • Stockner, J. G. & K. S. Shortreed, 1991. Autotrophic picoplankton: community composition, abundance and distribution across a gradient of oligotrophic British Columbia and Yukon Territory lakes. Internationale Revue der gesamten Hydrobiologie und Hydrographie 76: 581–601.

    Article  Google Scholar 

  • Stockner, J., C. Callieri & G. Cronberg, 2000. Picoplankton and other non-bloom-forming cyanobacteria in lakes. The Ecology of Cyanobacteria: 195–231.

  • Strous, M., J. A. Fuerst, E. H. M. Kramer, S. Logemann, G. Muyzer, K. T. van de Pas-Schoonen, R. Webb, J. G. Kuenen & M. S. M. Jetten, 1999. Missing lithotroph identified as new planctomycete. Nature 400: 446–449.

    Article  CAS  PubMed  Google Scholar 

  • Tai, V. & B. Palenik, 2009. Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. The ISME Journal 3: 903–915.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, A.-Y., G.-C. Gong, R. W. Sanders & K.-P. Chiang, 2013. Relationship of Synechococcus abundance to seasonal ocean temperature ranges. Terr Atmos Ocean Sci 24: 925–932.

    Article  Google Scholar 

  • Urbach, E., K. L. Vergin, G. L. Larson & S. J. Giovannoni, 2007. Bacterioplankton communities of Crater Lake, OR: dynamic changes with euphotic zone food web structure and stable deep water populations. Hydrobiologia 574: 161–177.

    Article  Google Scholar 

  • Veldhuis, M. J. W., G. W. Kraay, J. D. L. Van Bleijswijk & M. A. Baars, 1997. Seasonal and spatial variability in phytoplankton biomass, productivity and growth in the northwestern Indian ocean: the southwest and northeast monsoon, 1992-1993. Deep-Sea Research Part I: Oceanographic Research Papers 44: 425–449.

    Article  CAS  Google Scholar 

  • Vörös, L., P. Gulyás & J. Németh, 1991. Occurrence, Dynamics and production of picoplankton in Hungarian Shallow Lakes. Internationale Revue der gesamten Hydrobiologie und Hydrographie 76: 617–629.

    Article  Google Scholar 

  • Wacklin, P., L. Hoffmann & J. Komárek, 2009. Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornet et Flahault) comb. nova. Fottea 9: 59–64.

    Article  Google Scholar 

  • Waterbury, J. B., S. W. Watson, F. W. Valois & D. G. Franks, 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can Bull Fish Aquat Sci 214: 120.

    Google Scholar 

  • Weisse, T., 1988. Dynamics of autotrophic picoplankton in Lake Constance. Journal of Plankton Research 10: 1179–1188.

    Article  Google Scholar 

  • Weisse, T., 1993. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In Jones, J. G. (ed.), Advances in Microbial Ecology. Springer, Boston: 327–370.

    Chapter  Google Scholar 

  • Weisse, T. & U. Kenter, 1991. Ecological Characteristics of Autotrophic Picoplankton in a Prealpine Lake. Internationale Revue der gesamten Hydrobiologie und Hydrographie 76: 493–504.

    Article  Google Scholar 

  • Xia, X., N. K. Vidyarathna, B. Palenik, P. Lee & H. Liu, 2015. Comparison of the seasonal variations of Synechococcus assemblage structures in estuarine waters and coastal waters of Hong Kong. Applied and Environmental Microbiology 81: 7644–7655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, L., P. Xie, L. Guo, L. Li, Y. Miyabara & H.-D. Park, 2005. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Environmental Toxicology 20: 293–300.

    Article  CAS  PubMed  Google Scholar 

  • Zubkov, M. V. & P. H. Burkill, 2006. Syringe pumped high speed flow cytometry of oceanic phytoplankton. Cytometry Part A 69: 1010–1019.

    Article  Google Scholar 

  • Zubkov, M. V., P. H. Burkill & J. N. Topping, 2007. Flow cytometric enumeration of DNA-stained oceanic planktonic protists. Journal of Plankton Research 29: 79–86.

    Article  CAS  Google Scholar 

  • Zwart, G., B. C. Crump, M. P. Kamst-van Agterveld, F. Hagen & S.-K. Han, 2002. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology 28: 141–155.

    Article  Google Scholar 

  • Zwirglmaier, K., J. L. Heywood, K. Chamberlain, E. M. S. Woodward, M. V. Zubkov & D. J. Scanlan, 2007. Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environmental Microbiology 9: 1278–1290.

    Article  CAS  PubMed  Google Scholar 

  • Zwirglmaier, K., L. Jardillier, M. Ostrowski, S. Mazard, L. Garczarek, D. Vaulot, F. Not, R. Massana, O. Ulloa & D. J. Scanlan, 2008. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environmental Microbiology 10: 147–161.

    PubMed  Google Scholar 

  • Zwirglmaier, K., K. Keiz, M. Engel, J. Geist & U. Raeder, 2015. Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Frontiers in Microbiology 6: 1–18.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Nina Kamennaya for helping with using the flow cytometer and for very helpful discussions and Pia Scherer for helpful discussions about the manuscript. This work was supported by the Frank Hirschvogel Stiftung and the German Research Foundation (DFG) through the TUM International Graduate School of Science and Engineering (IGSSE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Ruber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Guest editors: Eugen Rott, Allan Pentecost & Jan Mares / Aspects of cyanobacterial biogeography, molecular ecology, functional ecology and systematics

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruber, J., Geist, J., Hartmann, M. et al. Spatio-temporal distribution pattern of the picocyanobacterium Synechococcus in lakes of different trophic states: a comparison of flow cytometry and sequencing approaches. Hydrobiologia 811, 77–92 (2018). https://doi.org/10.1007/s10750-017-3368-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3368-z

Keywords

Navigation