Skip to main content
Log in

Passive transport of a benthic bivalve (Corbicula fluminea) in large lakes: implications for deepwater establishment of invasive species

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Once introduced into a new ecosystem, the benthic bivalve Corbicula fluminea (Asian clam) will spread rapidly through both active and passive transport. In Lake Tahoe, CA-NV, where C. fluminea was introduced in 2002, populations have been found to thrive at shallow depths, where individuals are reproductive, but also at deeper depths where the only possible mechanism of population growth is downslope recruitment. This study used a variety of field and laboratory measurements to parameterize a hydrodynamic drag force model to predict passive clam transport under varying flow conditions. Laboratory results for clam shells ranging from 5 to 20 mm in length under flow conditions from 10 to 25 cm s−1 were used to solve for drag and lift coefficients. Field results are presented during weak stratification (September 2010–March 2011) when cooler water temperatures acted as a potential stressor for buried individuals to rise to the surface and be subjected to flows from which they would otherwise be isolated. During episodic wind events throughout this time period, peak horizontal water velocities of 25 cm s−1 and peak vertical (downwards) water velocities of 4 cm s−1 were measured in which all size classes of adult C. fluminea were potentially transported. Using a fundamental hydrodynamic drag force model approach to predict passive transport, the results of this study can be extended to other bivalve species for a wide array of flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A b :

Flow area associated with the bed (m−2)

A s, A p :

Base and frontal area of the shell, respectively (m2)

C d , C l :

Drag and lift coefficient of the shell, respectively (–)

D 50 :

Median grain size of a sediment type (m)

f b :

Friction factor –

g :

Gravitational acceleration (m s−2)

H :

Clam height (m)

k s :

Equivalent sand roughness (m)

L :

Clam length (m)

P b :

Bed width (m)

P w :

Wetted channel perimeter (m)

Re b, Re * :

Reynolds number associated with the bed and roughness Reynolds number, respectively (–)

u *, u cr :

Shear and critical shear velocity (m s−1)

u avg, u vert :

Average free stream and vertical velocity, respectively (m s−1)

u cr :

Critical bulk flow velocity (m s−1)

W :

Clam width (m)

V :

Shell volume (m3)

V i, V o :

Inner and outer volume of an ellipsoid shell, respectively (m3)

z :

Height above the surface (m)

z o :

Zero-velocity roughness height (m)

\(\kappa\) :

Von Karman constant (–)

\(\upsilon\) :

Kinematic viscosity (m2 s−1)

\(\rho\) :

Water density (kg m−3)

\(\rho_{\text{s}}\) :

Density of the shell material (kg m−3)

\(\tau_{\text{b}}\),\(\tau_{\text{b,cr}}\) \(\tau_{\text{b,cr(obs)}}\) :

Bed shear, critical and observed critical bed shear stress, respectively (N m−2)

\(\phi\) :

Angle of repose of the shell on the surface (°)

References

  • Araujo, R., D. Moreno & M. A. Ramos, 1993. The Asiatic clam Corbicula fluminea (Müller, 1774)(Bivalvia: Corbiculidae) in Europe. American Malacological Bulletin 10: 39–49, ISSN 0740-2783.

  • Caires, A. M., S. Chandra, B. L. Hayford & M. E. Wittmann, 2013. Four decades of change: dramatic loss of zoobenthos in an oligotrophic lake exhibiting gradual eutrophication. Freshwater Science 32(3): 692–705.

    Article  Google Scholar 

  • Chandra, S., Unpublished. Lake Tahoe and surrounding tributaries benthic surveys (2002–present).

  • Cherry, D. S., J. L. Scheller, N. L. Cooper & J. R. Bidwell, 2005. Potential effects of Asian clam (Corbicula fluminea) die-offs on native freshwater mussels (Unionidae) I: water-column ammonia levels and ammonia toxicity. Journal of the North American Benthological Society 24(2): 369–380.

    Article  Google Scholar 

  • Coats, R., J. E. Reuter, M. Dettinger, J. Riverson, G. Sahoo, S. G. Schladow, B. Wolfe & M. Costa, 2010. The effects of climate change on Lake Tahoe in the 21st century: meteorology, hydrology, loading and lake Response. Technical Report. Submitted to US Forest Service, Pacific Southwest Research Station, June 30, 2010.

  • Cossu, R. & M. G. Wells, 2012. A comparison of the shear stress distribution in the bottom boundary layer of experimental density and turbidity currents. European Journal of Mechanics-B/Fluids 32: 70–79.

    Article  Google Scholar 

  • Crespo, D., M. Dolbeth, S. Leston, R. Sousa & M. Â. Pardal, 2015. Distribution of Corbicula fluminea (Müller, 1774) in the invaded range: a geographic approach with notes on species traits variability. Biological Invasions 17(7): 2087–2101.

    Article  Google Scholar 

  • de Montaudouin, X., G. Bachelet & P. G. Sauriau, 2003. Secondary settlement of cockles Cerastoderma edule as a function of current velocity and substratum: a flume study with benthic juveniles. Hydrobiologia 503(1): 103–116.

    Article  Google Scholar 

  • Dey, S., 2003. Incipient motion of bivalve shells on sand beds under flowing water. Journal of Engineering Mechanics 129(2): 232–240.

    Article  Google Scholar 

  • Emerson, C. W. & J. Grant, 1991. The control of soft-shell clam (Mya arenaria) recruitment on intertidal sandflats by bedload sediment transport. Limnology and Oceanography 36(7): 1288–1300.

    Article  Google Scholar 

  • Foe, C. & A. Knight, 1986. Growth of Corbicula fluminea (Bivalvia) fed artificial and algal diets. Hydrobiologia 133(2): 155–164.

    Article  Google Scholar 

  • Forrest, A. L., M. E. Wittmann, V. Schmidt, N. A. Raineault, A. Hamilton, W. Pike & A. C. Trembanis, 2012. Quantitative assessment of invasive species in lacustrine environments through benthic imagery analysis. Limnology and Oceanography: Methods 10: 65–74.

    Article  Google Scholar 

  • Isom, B. G., 1986. Historical review of Asiatic clam (Corbicula) invasion and biofouling of waters and industries in the Americas. American Malacological Bulletin, Special Edition No. 2: 1–5.

  • Jennings, L. B. & H. L. Hunt, 2009. Distances of dispersal of juvenile bivalves (Mya arenaria (Linnaeus), Mercenaria mercenaria (Linnaeus), Gemma gemma (Totten)). Journal of Experimental Marine Biology and Ecology 376(2): 76–84.

    Article  Google Scholar 

  • Johnson, P. & R. F. McMahon, 1998. Effects of temperature and chronic hypoxia on survivorship of the Zebra mussel (Dreissena polymorpha) and Asian clam (Corbicula fluminea). Canadian Journal of Fisheries and Aquatic Sciences 55: 1564–1572.

    Article  Google Scholar 

  • Kappes, H. & P. Haase, 2012. Slow, but steady: dispersal of freshwater mollusks. Aquatic Science 74: 1–14.

    Article  Google Scholar 

  • Kraemer, L. R., 1979. Corbicula (Bivalvia: Sphaeriacea) vs. Indigenous mussels (Bivalvia: Unionacea) in U.S. rivers: a hard case for interspecific competition? American Zoologist 19: 1085–1096.

    Article  Google Scholar 

  • McMahon, R. F., 1991. Mollusca: Bivalvia. pp. 315–399. In Thorp, J. H. & A. P. Covich (eds.), Ecology and Classification of North American Freshwater Invertebrates. Academic Press Inc, New York: 911.

    Google Scholar 

  • McMahon, R. F., 1999. Invasive characteristics of the freshwater bivalve Corbicula fluminea. In Nonindigenous Freshwater Organisms: vectors, biology, and impacts. Lewis Publishers, Boca Raton: pp. 315–343.

  • McMahon, R. F. & J. G. Wilson, 1981. Seasonal respiratory responses to temperature and hypoxia in relation to burrowing depth in three intertidal bivalves. Journal of Thermal Biology 6(4): 267–277.

    Article  Google Scholar 

  • Morgan, D. E., M. Keser, J. T. Swenarton & J. F. Foertch, 2003. Population dynamics of the Asiatic clam, Corbicula fluminea (Mueller) in the Lower Connecticut River: establishing a foothold in New England. Journal of Shellfish Research 22(1): 193–203.

    Google Scholar 

  • Olivera, A. M. & W. L. Wood, 1997. Hydrodynamics of bivalve shell entrainment and transport. Journal of Sedimentary Research 67(3): 514–526.

    Google Scholar 

  • Prezant, R. S. & K. Chalermwat, 1984. Floatation of the bivalve Corbicula fluminea as a means of dispersal. Science 225(4669): 1491–1493.

    Article  CAS  PubMed  Google Scholar 

  • Pulliam, H. R., 1988. Sources, sinks, and population regulation. The American Naturalist 132(5): 652–661.

    Article  Google Scholar 

  • Reardon, K. E., F. A. Bombardelli, P. A. Moreno-Casas, F. J. Rueda & S. G. Schladow, 2014. Wind-driven nearshore sediment resuspension in a deep lake during winter. Water Resource Research 50: 8826–8844.

    Article  Google Scholar 

  • Redjah, I., F. Olivier, R. Tremblay, B. Myrand, F. Pernet, U. Neumeier & L. Chevarie, 2010. The importance of turbulent kinetic energy on transport of juvenile clams (Mya arenaria). Aquaculture 307(1): 20–28.

    Article  Google Scholar 

  • Rueda, F. J., S. G. Schladow & S. Ó. Pálmarsson, 2003. Basin-scale internal wave dynamics during a winter cooling period in a large lake. Journal of Geophysical Research 108: 3097.

    Article  Google Scholar 

  • Sahoo, G. B., S. G. Schladow, J. E. Reuter, R. Coats, M. Dettinger, J. Riverson, B. Wolfe & M. Costa-Cabral, 2013. The response of Lake Tahoe to climate change. Climatic Change 116(1): 71–95.

    Article  Google Scholar 

  • Sousa, R., C. Antunes & L. Guilhermino, 2008. Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Annales de Limnologie–International Journal of Limnology 44(2): 85–94.

    Article  Google Scholar 

  • Stumpner, P. R., 2014. Controls on exchange flow between Emerald Bay and Lake Tahoe, CA-NV. Master’s Thesis, University of California – Davis.

  • Werner, S. & K.-O. Rothhaupt, 2008. Effects of the invasive Asian clam Corbicula fluminea on benthic macroinvertebrate taxa in laboratory experiments. Fundamental and Applied Limnology/Archiv für Hydrobiologie 173(2): 145–152.

    Article  Google Scholar 

  • Wiberg, P. L. & J. D. Smith, 1987. Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resources Research 23(8): 1471–1480.

    Article  Google Scholar 

  • Williams, C. J. & R. F. McMahon, 1986a. Power station entrainment of Corbicula fluminea (Mueller) in relation to population dynamics, reproductive cycle and biotic and abiotic variables. American Malacological Bulletin 2: 99–113.

    Google Scholar 

  • Williams, C. J. & R. F. McMahon, 1986b. A reassessment of growth rate, life span, life cycle, and population dynamics in a natural population and caged individuals of Corbicula fluminea. American Malacological Bulletin Special Edition 2: 151–166.

    Google Scholar 

  • Williams, C. J. & R. F. McMahon, 1989. Annual variation of tissue biomass and carbon and nitrogen content in the freshwater bivalve Corbicula fluminea relative to downstream dispersal. Canadian Journal of Zoology 67(1): 82–90.

    Article  Google Scholar 

  • Wittmann, M. E., S. Chandra, J. E. Reuter, S. G. Schladow, B. C. Allen & K. J. Webb, 2012. The control of an invasive bivalve, Corbicula fluminea, using gas impermeable benthic barriers in a large natural lake. Environmental Management Online Issue, 1–11.

  • Wright, L. D., R. A. Gammisch & R. J. Byrne, 1990. Hydraulic roughness and mobility of three oyster–bed artificial substrate materials. Journal of Coastal Research 6(4): 867–898.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Southern Nevada Public Land Management Act and the Nevada Division of State Lands with additional backing by the Tahoe Regional Planning Agency, U.S. Fish and Wildlife Service and the Lahontan Regional Water Quality Control Board. Additionally, the authors would like to thank both the University of California, Davis and the University of Nevada, Reno for their ongoing support of research with specific thanks to Brant Allen, Katie Webb, and Scott Hackley (UCDavis) and Sudeep Chandra, Andrea Caires, Ka Lai N. Ryan and Marianne Denton (UNR). Their enthusiasm for both the lake and the work makes research like this possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Forrest.

Additional information

Handling editor: John E. Havel

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forrest, A.L., Andradóttir, H.Ó., Mathis, T.J. et al. Passive transport of a benthic bivalve (Corbicula fluminea) in large lakes: implications for deepwater establishment of invasive species. Hydrobiologia 797, 87–102 (2017). https://doi.org/10.1007/s10750-017-3162-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3162-y

Keywords

Navigation