Skip to main content

Advertisement

Log in

Taxonomic and functional group composition of macroinvertebrate assemblages in agricultural drainage ditches

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Aquatic macroinvertebrates in drainage ditches may alter rates of nutrient cycling and decomposition of organic matter but have not been accounted for in studies of ditch biogeochemistry. We collected sediment cores from four pairs of field (intermittent) and collection (perennial) ditches on Maryland’s Eastern Shore monthly from March 2011 to February 2012 to determine how taxonomic and functional group composition varies among different ditch types. We identified 138 taxa and assigned them to functional groups according to trophic position and modes of burrowing. There was no difference in mean abundance of invertebrates (5821 ind./m2) between seasons or types of ditches, and species richness peaked in winter (20 taxa/site) compared to other seasons (15 taxa/site), but did not vary between ditch types. Assemblage composition differed between field and collection ditches, but functional group composition did not. Field ditches flow intermittently which may limit the assemblage to early colonists and taxa adapted to survive desiccation. The benthic macroinvertebrate assemblage was dominated by the collector–gatherer functional feeding group (83.6%) and burrowing taxa (97.1%). Bioturbation by burrowing macroinvertebrates is likely an important process contributing to ecosystem-scale functions of drainage ditches, including regulation of biogeochemical processes occurring at the sediment–water interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ACOE & EPA, 2015. Clean water rule: definition of “Waters of the United States”. Federal Register 80: 37054–37127.

    Google Scholar 

  • Alberts, E. E., G. E. Schuman & R. E. Burwell, 1978. Seasonal runoff losses of nitrogen and phosphorus from Missouri valley loess watersheds. Journal of Environmental Quality 7: 203–208.

    Article  CAS  Google Scholar 

  • Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters. Springer, Dordrecht.

    Book  Google Scholar 

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish - second edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water, Washington, DC [available on http://water.epa.gov/scitech/monitoring/rsl/bioassessment/index.cfm].

  • Blann, K. L., J. L. Anderson, G. R. Sands & B. Vondracek, 2009. Effects of agricultural drainage on aquatic ecosystems: a review. Critical Reviews in Environmental Science and Technology 39: 909–1001.

    Article  CAS  Google Scholar 

  • Buchanan, C., K. Foreman, J. Johnson & A. Griggs, 2011. Development of a basin-wide benthic index of biotic integrity for non-tidal streams and wadeable rivers in the Chesapeake Bay watershed: Final report to the Chesapeake Bay Program Non-Tidal Water Quality Workgroup. Interstate Commission on the Potomac River Basin.

  • Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Article  Google Scholar 

  • Chaffin, J. D. & D. D. Kane, 2010. Burrowing mayfly (Ephemeroptera: Ephemeridae: Hexagenia spp.) bioturbation and bioirrigation: a source of internal phosphorus loading in Lake Erie. Journal of Great Lakes Research 36: 57–63.

    Article  CAS  Google Scholar 

  • Cooper, C. M., M. T. Moore, E. R. Bennett, S. Smith Jr., J. L. Farris, C. D. Milam & F. D. Shields Jr., 2004. Innovative uses of vegetated drainage ditches for reducing agricultural runoff. Water Science and Technology 49: 117–123.

    CAS  PubMed  Google Scholar 

  • Covich, A. P., M. C. Austen, F. Bärlocher, E. Chauvet, B. J. Cardinale, C. L. Biles, P. Inchausti, O. Dangles, M. Solan, M. O. Gessner, B. Statzner & B. Moss, 2004. The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. BioScience 54: 767–775.

    Article  Google Scholar 

  • Cummins, K. W., R. W. Merritt & P. C. N. Andrade, 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna & Environment 40: 69–89.

    Article  Google Scholar 

  • Davies, B., J. Biggs, P. Williams, M. Whitfield, P. Nicolet, D. Sear, S. Bray & S. Maund, 2008. Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agriculture Ecosystems and Environment 125: 1–8.

    Article  Google Scholar 

  • Delucchi, C. M. & B. L. Peckarsky, 1989. Life history patterns of insects in an intermittent and a permanent stream. Journal of the North American Benthological Society 8: 308–321.

    Article  Google Scholar 

  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • Dukes, M. D. & R. O. Evans, 2006. Impact of agriculture on water quality in the North Carolina Middle Coastal Plain. Journal of Irrigation & Drainage Engineering 132: 250–262.

    Article  Google Scholar 

  • Fend, S. V. & D. R. Lenat, 2012. New Eclipidrilus species (Annelida, Clitellata, Lumbriculidae) from southeastern North America. Zootaxa 3194: 51–67.

    Google Scholar 

  • Fox, J. & S. Weisberg, 2011. An {R} Companion to Applied Regression. Sage, Thousand Oaks, CA [available on http://socserv.socsci.mcmaster.ca/jfox/Books/Companion].

  • Gerino, M., G. Stora, F. François- Carcaillet, F. Gilbert, J.-C. Poggiale, F. Mermillod-Blondin, G. Desrosiers & P. Vervier, 2003. Macro-invertebrate functional groups in freshwater and marine sediments: a common mechanistic classification. Vie Millieu 53: 221–231.

    Google Scholar 

  • Grumbles, B. H., 1991. Wetlands, drainage ditches, and the Clean Water Act. Journal of Soil and Water Conservation 46: 174–177.

    Google Scholar 

  • Herzon, I. & J. Helenius, 2008. Agricultural drainage ditches, their biological importance and functioning. Biological Conservation 141: 1171–1183.

    Article  Google Scholar 

  • Hill, C. R. & J. S. Robinson, 2012. Phosphorus flux from wetland ditch sediments. Science of the Total Environment 437: 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Hothorn, T., F. Bretz & P. Westfall, 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363.

    Article  PubMed  Google Scholar 

  • Kröger, R., M. M. Holland, M. T. Moore & C. M. Cooper, 2008. Agricultural drainage ditches mitigate phosphorus loads as a function of hydrological variability. Journal of Environmental Quality 37: 107–113.

    Article  PubMed  Google Scholar 

  • Kröger, R., E. Dunne, J. Novak, K. King, E. McLellan, D. Smith, J. Strock, K. Boomer, M. Tomer & G. Noe, 2013. Downstream approaches to phosphorus management in agricultural landscapes: regional applicability and use. Science of the Total Environment 442: 263–274.

    Article  PubMed  Google Scholar 

  • Kuhn, M., S. Weston, J. Wing, J. Forester & T. Thaler, 2013. contrast: A collection of contrast methods [available on http://CRAN.R-project.org/package=contrast].

  • Langheinrich, U., S. Tischew, R. M. Gersberg & V. Lüderitz, 2004. Ditches and canals in management of fens: opportunity or risk? A case study in the Drömling Natural Park, Germany. Wetlands Ecology and Management 12: 429–445.

    Article  Google Scholar 

  • Leslie, A. W., R. F. Smith, D. E. Ruppert, K. Bejleri, J. M. Mcgrath, B. A. Needelman & W. O. Lamp, 2012. Environmental factors structuring benthic macroinvertebrate communities of agricultural ditches in Maryland. Environmental Entomology 41: 802–812.

    Article  Google Scholar 

  • Lewandowski, J., C. Laskov & M. Hupfer, 2007. The relationship between Chironomus plumosus burrows and the spatial distribution of pore-water phosphate, iron and ammonium in lake sediments. Freshwater Biology 52: 331–343.

    Article  CAS  Google Scholar 

  • Lohrer, A. M., S. F. Thrush & M. M. Gibbs, 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431: 1092–1095.

    Article  CAS  PubMed  Google Scholar 

  • Mermillod-Blondin, F., 2011. The functional significance of bioturbation and biodeposition on biogeochemical processes at the water–sediment interface in freshwater and marine ecosystems. Journal of the North American Benthological Society 30: 770–778.

    Article  Google Scholar 

  • Mermillod-Blondin, F. & R. Rosenberg, 2006. Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquatic Sciences 68: 434–442.

    Article  CAS  Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg (eds), 2008. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Pub. Co., Dubuque.

    Google Scholar 

  • Meysman, F. J. R., J. J. Middelburg & C. H. R. Heip, 2006. Bioturbation: a fresh look at Darwin’s last idea. Trends in Ecology & Evolution 21: 688–695.

    Article  Google Scholar 

  • Millard, C. J., P. F. Kazyak & A. P. Prochaska, 2001. Caroline County Results of the 1994–1997 Maryland Biological Stream Survey: County Assessments. Chesapeake Bay and Watershed Programs Monitoring and Non-Tidal Assessment - EA-01-31.

  • Montserrat, F., C. Van Colen, S. Degraer, T. Ysebaert & P. M. J. Herman, 2008. Benthic community-mediated sediment dynamics. Marine Ecology Progress Series 372: 43–59.

    Article  CAS  Google Scholar 

  • Needelman, B. A., P. J. A. Kleinman, J. S. Strock & A. L. Allen, 2007a. Improved management of agricultural drainage ditches for water quality protection: an overview. Journal of Soil and Water Conservation 62: 171–177.

    Google Scholar 

  • Needelman, B. A., D. E. Ruppert & R. E. Vaughan, 2007b. The role of ditch soil formation and redox biogeochemistry in mitigating nutrient and pollutant losses from agriculture. Journal of Soil and Water Conservation 62: 207–215.

    Google Scholar 

  • Nguyen, L. & J. Sukias, 2002. Phosphorus fractions and retention in drainage ditch sediments receiving surface runoff and subsurface drainage from agricultural catchments in the North Island, New Zealand. Agriculture, Ecosystems & Environment 92: 49–69.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2013. vegan: Community ecology package [available on http://CRAN.R-project.org/package=vegan].

  • Painter, D., 1999. Macroinvertebrate distributions and the conservation value of aquatic Coleoptera, Mollusca and Odonata in the ditches of traditionally managed and grazing fen at Wicken Fen, UK. Journal of Applied Ecology 36: 33–48.

    Article  Google Scholar 

  • Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar & R Core Team, 2014. Nlme: Linear and Nonlinear Mixed Effects Models [available on http://CRAN.R-project.org/package=nlme].

  • Pringle, C. M., N. Hemphill, W. H. McDowell, A. Bednarek & J. G. March, 1999. Linking species and ecosystems: different biotic assemblages cause interstream differences in organic matter. Ecology 80: 1860–1872.

    Article  Google Scholar 

  • R Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [available on http://www.R-project.org/].

  • Roberts, D. W., 2013. labdsv: Ordination and multivariate analysis for ecology [available on http://CRAN.R-project.org/package=labdsv].

  • Sharpley, A. N., T. Krogstad, P. J. A. Kleinman & B. Haggard, 2007. Managing natural processes in drainage ditches for nonpoint source phosphorus control. Journal of Soil and Water Conservation 62: 197–206.

    Google Scholar 

  • Shigaki, F., P. J. A. Kleinman, J. P. Schmidt, A. N. Sharpley & A. L. Allen, 2008. Impact of dredging on phosphorus transport in agricultural drainage ditches of the Atlantic Coastal Plain. JAWRA Journal of the American Water Resources Association 44: 1500–1511.

    Article  CAS  Google Scholar 

  • Shupryt, M. P. & R. S. Stelzer, 2009. Macrophyte beds contribute disproportionately to benthic invertebrate abundance and biomass in a sand plains stream. Hydrobiologia 632: 329–339.

    Article  Google Scholar 

  • Simon, T. N. & J. Travis, 2011. The contribution of man-made ditches to the regional stream biodiversity of the new river watershed in the Florida panhandle. Hydrobiologia 661: 163–177.

    Article  Google Scholar 

  • Smith, D. G., 2001. Pennak’s Freshwater Invertebrates of the United States. Wiley, New York.

    Google Scholar 

  • Stranko, S., D. Boward, J. Kilian, A. Becker, M. Ashton, M. Southerland, B. Franks, W. Harbold & J. Cessna, 2014. Maryland biological stream survey: round four field sampling manual. Maryland Department of Natural Resources. Publication #12-1212011-491.

  • Stribling, J. B., B. K. Jessup, J. S. White, D. Boward & M. Hurd, 1998. Development of a benthic index of biotic integrity for Maryland streams. Chesapeake Bay and Watershed Programs Monitoring and Non-Tidal Assessment - EA-98-3.

  • Usborne, E. L., R. Kröger, S. C. Pierce, J. Brandt & D. Goetz, 2013. Preliminary evidence of sediment and phosphorus dynamics behind newly installed low-grade weirs in agricultural drainage ditches. Water, Air and Soil Pollution 224: 1520.

    Article  Google Scholar 

  • Vanni, M. J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology, Evolution, and Systematics 33: 341–370.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vaughan, R. E., B. A. Needelman, P. J. A. Kleinman & M. C. Rabenhorst, 2008. Morphology and characterization of ditch soils at an Atlantic Coastal Plain farm. Soil Science Society of America Journal 72: 660–669.

    Article  CAS  Google Scholar 

  • Verdonschot, R. C. M., H. E. Keizer-Vlek & P. F. M. Verdonschot, 2011. Biodiversity value of agricultural drainage ditches: a comparative analysis of the aquatic invertebrate fauna of ditches and small lakes. Aquatic Conservation: Marine and Freshwater Ecosystems 21: 715–727.

    Article  Google Scholar 

  • Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem functions. Annual Review of Entomology 41: 115–139.

    Article  CAS  PubMed  Google Scholar 

  • Webb, A. P. & B. D. Eyre, 2004. Effect of natural populations of burrowing thalassinidean shrimp on sediment irrigation, benthic metabolism, nutrient fluxes and denitrification. Marine Ecology Progress Series 268: 205.

    Article  Google Scholar 

  • Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer, New York [available on http://had.co.nz/ggplot2/book].

  • Williams, P., M. Whitfield, J. Biggs, S. Bray, G. Fox, P. Nicolet & D. Sear, 2003. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115: 329–341.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the private landowners for granting us permission to perform this study on their farms. We appreciate helpful comments on the manuscript provided by Dr. Robert Smith, Dr. Lauren Culler, members of the Lamp Lab, and two anonymous reviewers. This work was partially funded by Hatch Project #MD-ENTM-1016 and the Biotechnology Risk Assessment Program Competitive Grant No. 2009-40002-05821 from the United States Department of Agriculture National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan W. Leslie.

Additional information

Handling editor: Verónica Jacinta Lopes Ferreira

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2016_2947_MOESM1_ESM.pdf

Supplementary material 1 (PDF 81 kb). Totals of taxa collected from ditches using soil cores by ditch type. Asterisk (*) represents significant association of taxon with one type of ditch. Functional feeding groups (FFG) are shredder (SH) collector–gatherer (CG), collector–filterer (CF), scraper (SC), and predator (PR). Functional bioturbation groups (FBG) are conveyor (CV), gallery diffusor (GD), biodiffusor (BD), and non-burrower (NB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leslie, A.W., Lamp, W.O. Taxonomic and functional group composition of macroinvertebrate assemblages in agricultural drainage ditches. Hydrobiologia 787, 99–110 (2017). https://doi.org/10.1007/s10750-016-2947-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2947-8

Keywords

Navigation