Skip to main content

Advertisement

Log in

Effects of land use on larval Odonata assemblages in cloud forest streams in central Veracruz, Mexico

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study analyzes the effect of stream water quality and its relationship with habitat characteristics on larval Odonata assemblages in streams found in tropical montane cloud forests, pastures, and coffee plantations in the upper La Antigua River watershed. The main factors that influenced larval Odonata assemblages in forest streams were low temperatures and high oxygen levels in water, coupled with a high diversity of the substrate and riparian vegetation; in pasture streams and coffee plantation streams, sedimentation strongly affected the composition of larval Odonata assemblages. In all the streams, species richness (0 D) was higher during the dry season. The highest Shannon α diversity (1 D) values were found in forest streams during the rainy season; however, in pasture and coffee plantation streams, 1 D values were higher during the dry season. The low species turnover in forest streams suggests that these streams provide highly stable conditions for Odonata assemblages; however, in pasture and coffee plantation streams, the higher turnover was related to the more variable water and habitat conditions. Thus, the persistence of Odonata assemblages in the upper La Antigua River watershed is closely related to the conservation status of the tropical montane cloud forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcock, J., 1985. Reproductive behaviour of Cordulegaster diadema Selys (Anisoptera: Cordulegastridae). Odonatologica 14: 313–317.

    Google Scholar 

  • Altamiranda, S., G. L. A. Pérez & M. L. C. Gutiérrez, 2010. Composition and microhabitat preference of Odonata larvae (Insecta) in the San Juan de Tocagua swamp (Atlántico, Colombia). Caldasia 32: 399–410.

    Google Scholar 

  • Aoki, T., 1999. Larval development, emergence and seasonal regulation in Asiagomphus pryeri (Selys) (Odonata: Gomphidae). Hydrobiologia 394: 179–192.

    Article  Google Scholar 

  • APHA, 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.

    Google Scholar 

  • Arellano, R. G., 2000. Pérdida de suelo y nutrientes en agroecosistemas de café en la subcuenca del río Castán, Trujillo-Venezuela. Revista Forestal Venezolana 44: 79–86.

    Google Scholar 

  • Astudillo-Aldana, M. R., 2009. Diversidad filogenética de Odonata (Insecta) en el Río Huehueyapan en Coatepec, Veracruz, México y su relación con factores físico-químicos. M.Sc. Thesis, Instituto de Ecología, A.C. Xalapa, México.

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

  • Belsky, A. J., A. Matzke & S. Uselman, 1999. Survey of livestock influences on stream and riparian ecosystems in the Western United States. Journal of Soil Water Conservation 54: 419–431.

    Google Scholar 

  • Briers, R. A. & J. Biggs, 2003. Indicator taxa for the conservation of pond invertebrate diversity. Aquatic Conservation: Marine and Freshwater Ecosystems 13: 323–330.

    Article  Google Scholar 

  • Brittain, J. E. & T. J. Eikeland, 1988. Invertebrate drift – a review. Hydrobiologia 166: 77–93.

    Article  Google Scholar 

  • Bruijnzeel, L. A., F. N. Scatena & L. S. Hamilton, 2010. Tropical Montane Cloud Forest. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bubb, P., I. May, L. Miles & J. Sayer, 2004. Cloud Forest Agenda. UNEP-WCMC, Cambridge.

    Google Scholar 

  • Bücker, A., M. Sondermann, H. G. Frede & L. Breuer, 2010. The influence of land-use on macroinvertebrate communities in montane tropical streams – a case study from Ecuador. Fundamental and Applied Limnology/Archiv für Hydrobiologie 177: 267–282.

    Article  Google Scholar 

  • Butler, R. G. & P. G. de Maynadier, 2008. The significance of littoral and shoreline habitat integrity to the conservation of lacustrine damselflies (Odonata). Journal of Insect Conservation 12: 23–36.

    Article  Google Scholar 

  • Campbell, W. B. & R. Novelo-Gutiérrez, 2007. Reduction in odonate phylogenetic diversity associated with dam impoundment is revealed using taxonomic distinctness. Fundamental and Applied Limnology/Archiv für Hydrobiologie 168: 83–92.

    Article  Google Scholar 

  • Catling, P. M., 2005. A potential for the use of dragonfly (Odonata) diversity as a bioindicator of the efficiency of sewage lagoons. The Canadian Field Naturalist 119: 233–236.

    Google Scholar 

  • Clark, T. E. & M. J. Samways, 1996. Dragonflies (Odonata) as indicators of biotope quality in the Kruger National Park, South Africa. Journal of Applied Ecology 5: 1001–1012.

    Article  Google Scholar 

  • Colwell, R. K., 2009. EstimateS: statistical estimation of species richness and shared species from samples. Version 8.2. User’s guide and application [available on internet at http://purl.oclc.org/estimates].

  • Colwell, R. K. & J. A. Coddington, 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions: Biological Sciences 345: 101–118.

    Article  CAS  Google Scholar 

  • Corbet, P. S., 1993. Are Odonata useful as bioindicators? Libellula 12: 91–102.

    Google Scholar 

  • Corbet, P. S., 1999. Dragonflies: Behavior and Ecology of Odonata. Cornell University Press, Ithaca.

    Google Scholar 

  • Crawley, M. J., 2002. Statistical Computing: An Introduction to Data Analysis Using S-PLUS. Wiley, New York.

    Google Scholar 

  • Dianne, C., D. C. Martin & R. K. Neely, 2001. Benthic macroinvertebrate response to sedimentation in a Typha angustifolia L. wetland. Wetlands Ecology and Management 9: 441–454.

    Article  Google Scholar 

  • Esquivel, C., 1997. Calopterygidae. In Solís, A. (ed.), Las Familias de Insectos de Costa Rica. INBio [available on internet at http://www.inbio.ac.cr/papers/insectoscr/Texto220].

  • Feisinger, P., 2001. Designing Field Studies for Biodiversity Conservation. Island Press, Washington, DC.

    Google Scholar 

  • Ferreras-Romero, M. & P. S. Corbet, 1999. The life cycle of Cordulegaster boltonii (Donovan, 1807) (Odonata: Cordulegastridae) in the Sierra Morena Mountains (southern Spain). Hydrobiologia 405: 39–48.

    Article  Google Scholar 

  • González-Soriano, E. & R. Novelo-Gutiérrez, 1996. Odonata. In Llorente-Bousquets, J., A. N. García-Aldrete & E. González-Soriano (eds), Biodiversidad, Taxonomía y Biogeografía de los Artrópodos de México: Hacia una Síntesis de su Conocimiento. UNAM and CONABIO, México: 147–167.

    Google Scholar 

  • Guadarrama-Zugasti, C., 2000. The transformation of coffee farming in Central Veracruz, Mexico: sustainable strategies? PhD Thesis, University of California, Santa Cruz.

  • Hauer, F. & G. Lamberti, 2007. Methods in Stream Ecology. Academic, New York.

    Google Scholar 

  • Hay, C. H., T. G. Franti, D. B. Marx, E. J. Peters & L. W. Hesse, 2008. Macroinvertebrate drift density in relation to abiotic factors in the Missouri River. Hydrobiologia 598: 175–189.

    Article  Google Scholar 

  • Hering, D., R. K. Johnson, S. Kramm, S. Schmutz, K. Szoszkiewwicz & P. F. M. Verdonschot, 2006. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology 51: 1757–1785.

    Article  Google Scholar 

  • Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–431.

    Article  Google Scholar 

  • Hubbard, R. K., G. L. Newton & G. M. Hill, 2004. Water quality and the grazing animal. Journal of Animal Science 82: 255–263.

    Google Scholar 

  • Johnson, C., 1968. Seasonal ecology of the dragonfly Oplonaeschna armata Hagen (Odonata: Aeshnidae). American Middle Naturalist 80: 449–457.

    Article  Google Scholar 

  • Jost, L., 2007. Partitioning diversity into independent alpha and beta components. Ecology 88: 2427–2439.

    Article  PubMed  Google Scholar 

  • Jost, L., P. DeVries, T. Walla, H. Greeney, A. Chao & C. Ricotta, 2010. Partitioning diversity for conservation analyses. Diversity and Distributions 16: 65–76.

    Article  Google Scholar 

  • Korkeamäki, E. & J. Suhonen, 2002. Distribution and habitat specialization of species affect local extinction in dragonfly Odonata populations. Ecography 25: 459–465.

    Article  Google Scholar 

  • Kovach, W. L., 1999. MVSP – A Multivariate Statistical Package for Windows, 3.1. Kovach Computing Services, Pentraeth, Wales.

    Google Scholar 

  • Marczak, L. B., J. S. Richardson & M. C. Classen, 2006. Life history phenology and sediment size association of the dragonfly Cordulegaster dorsalis (Odonata: Cordulegastridae) in an ephemeral habitat in southwestern British Columbia. Canadian Field Naturalist 120: 347–350.

    Google Scholar 

  • McPeek, M. A., 2008. Ecological factors limiting the distributions and abundances of Odonata. In Córdoba-Aguilar, A. (ed.), Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research. Oxford University Press, Oxford: 51–62.

    Chapter  Google Scholar 

  • Muñoz-Villers, L. E. & J. López-Blanco, 2008. Land use/cover changes using Landsat TM/ETM images in a tropical and biodiverse mountainous area of central-eastern Mexico. International Journal of Remote Sensing 29: 71–93.

    Article  Google Scholar 

  • Novelo-Gutiérrez, R., 1992. Biosystematics of the larvae of the genus Argia in México (Zygoptera: Coenagrionidae). Odonatologica 21: 39–71.

    Google Scholar 

  • Novelo-Gutiérrez, R., 2000. Description of the larva of Hetaerina infecta Calvert (Odonata: Calopterygidae). Proceedings of the Entomological Society of Washington 102: 99–104.

    Google Scholar 

  • O’Callaghan, P., M. Jocqué & M. Kelly-Quinn, 2015. Nutrient- and sediment-induced macroinvertebrate drift in Honduran cloud forest streams. Hydrobiologia 758: 75–86.

    Article  CAS  Google Scholar 

  • Oertli, B., 2008. The use of dragonflies in the assessment and monitoring of aquatic habitats. In Córdoba-Aguilar, A. (ed.), Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research. Oxford University Press, Oxford: 79–95.

    Chapter  Google Scholar 

  • Oppel, S., 2005. Habitat associations of an Odonata community in a lower montane rainforest in Papua New Guinea. International Journal of Odonatology 8: 243–257.

    Article  Google Scholar 

  • Ormerod, S. J., N. S. Weatherley & W. J. Merret, 1990. The influence of conifer plantations on the distribution of the golden ringed dragonfly Cordulegaster boltoni (Odonata) in upland Wales (UK). Biological Conservation 53: 241–252.

    Article  Google Scholar 

  • Osborne, L. L. & D. A. Kovacic, 1993. Riparian vegetated buffer strips in water quality restoration and stream management. Freshwater Biology 29: 243–258.

    Article  Google Scholar 

  • R Development Core Team, 2006. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0 [available on internet at http://www.R-project.org].

  • Schindler, M., C. Fest & A. Chovanec, 2003. Dragonfly associations (Insecta: Odonata) in relation to habitat variables: a multivariate approach. Hydrobiologia 497: 169–180.

    Article  Google Scholar 

  • Smith, J., M. J. Samways & S. Taylor, 2007. Assessing riparian quality using two complementary sets of bioindicators. Biodiversity Conservation 16: 2695–2713.

    Article  Google Scholar 

  • Stewart, D. A. B. & M. J. Samways, 1998. Conserving dragonfly (Odonata) assemblages relative to river dynamics in an African savanna game reserve. Conservation Biology 12: 683–692.

    Article  Google Scholar 

  • Strahler, A., 1952. Hypsometric (area–altitude) analysis of erosional topography. Geological Society of America Bulletin 63: 1117–1142.

    Article  Google Scholar 

  • Strayer, D. L., R. E. Beighley, L. C. Thompson, S. Brooks, C. Nilsson, G. Pinay & R. J. Naiman, 2003. Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems 6: 407–423.

    Article  Google Scholar 

  • ter Braak, C. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Section on Permutation Methods Microcomputer Power, Ithaca.

    Google Scholar 

  • Vázquez, G., J. A. Aké-Castillo & M. E. Favila, 2011. Algal assemblages and their relationship with water quality in tropical Mexican streams with different land uses. Hydrobiologia 667: 173–189.

    Article  CAS  Google Scholar 

  • Watson, J. A. L., A. H. Arthington & D. L. Conrick, 1982. Effect of sewage effluent on dragonflies (Odonata) of Bulimba Creek, Brisbane. Australian Journal of Marine and Freshwater Research 33: 517–528.

    Article  Google Scholar 

  • Williams-Linera, G., 2007. El Bosque de Niebla del Centro de Veracruz: Ecología, Historia y Destino en Tiempos de Fragmentación y Cambio Climático. Instituto de Ecología, A.C. CONABIO, Xalapa.

    Google Scholar 

  • Wood, P. J. & P. D. Armitage, 1997. Biological effects of fine sediment in the lotic environment. Environmental Management 21: 203–217.

    Article  PubMed  Google Scholar 

  • Worthen, W. B., S. Gregory, J. Felten & M. J. Hutton, 2004. Larval habitat associations of Progomphus obscurus at two spatial scales (Odonata: Gomphidae). International Journal of Odonatology 7: 97–109.

    Article  Google Scholar 

Download references

Acknowledgments

This study received support from the Consejo Nacional de Ciencia y Tecnología (CONACyT), through a Doctoral Research Grant (No. 168443) to the first author and by the Project 101542. We thank Ariadna Martínez Virués and Daniela Cela Cadena for their support in conducting laboratory analyses. We appreciate the invaluable field assistance, suggestions, and comments to this study from José Antonio Gómez Anaya, and to Javier Tolome Romero for his support in field sampling. We also thank Rosario Landgrave for the GIS map of the study. Special thanks to María Elena Sánchez-Salazar for contributing to the English manuscript. We gratefully acknowledge the significant contribution of two anonymous reviewers and the Associate Editor who provided suggestions for the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vázquez.

Additional information

Handling editor: Checo Colón-Gaud

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-García, P.L., Vázquez, G., Novelo-Gutiérrez, R. et al. Effects of land use on larval Odonata assemblages in cloud forest streams in central Veracruz, Mexico. Hydrobiologia 785, 19–33 (2017). https://doi.org/10.1007/s10750-016-2900-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2900-x

Keywords

Navigation