Skip to main content

Advertisement

Log in

Connecting the trophic dots: responses of an aquatic bird species to variable abundance of macroinvertebrates in northern boreal wetlands

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To evaluate variation in abundance of boreal wetland macroinvertebrates and test for effects of this variation on the diet and habitat use of a bird species that consumes aquatic invertebrates (lesser scaup, Aythya affinis), we collected macroinvertebrates and birds and conducted bird surveys (June–August) at two wetland complexes in northwestern Canada and assessed diet composition using an isotopic approach. At both study areas, for macroinvertebrate taxa reported to be key prey items for scaup, biomass varied intra-seasonally and annually, but patterns differed among taxa and between areas. Macroinvertebrate biomass varied strongly across wetlands within study areas, and isotopic mixing models indicated that local heterogeneity in macroinvertebrate biomass was reflected in duckling diets, which also varied across wetlands, indicating a generalist foraging strategy for this species. Wetland habitats used by brood-rearing female scaup had greater amphipod and gastropod biomasses. Our results show that boreal wetland macroinvertebrate abundances vary considerably across coarse and fine spatial scales. Female scaup and their ducklings appear well adapted to exploit this dynamic food resource, but overall productivity of scaup may depend on the abundances of certain taxa, suggesting that conservation efforts should focus on maintaining abundant populations of key wetland invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afton, A. D. & C. D. Ankney, 1991. Nutrient-reserve dynamics of breeding lesser scaup - a test of competing hypotheses. Condor 93: 89–97.

    Article  Google Scholar 

  • Arnold, K. E., S. L. Ramsay, L. Henderson & S. D. Larcombe, 2010. Seasonal variation in diet quality: antioxidants, invertebrates and blue tits Cyanistes caeruleus. Biological Journal of the Linnean Society 99: 708–717.

    Article  Google Scholar 

  • Baldassarre, G., 2014. Ducks, Geese, and Swans of North America. JHU Press, Baltimore.

    Google Scholar 

  • Bartonek, J. C. & J. J. Hickey, 1969. Food habits of canvasbacks redheads and lesser scaup in Manitoba. Condor 71: 280–290.

    Article  Google Scholar 

  • Bartonek, J. C. & H. W. Murdy, 1970. Summer foods of lesser scaup in subarctic taiga. Arctic 23: 35–44.

    Article  Google Scholar 

  • Batzer, D. P., 2013. The seemingly intractable ecological responses of invertebrates in North American wetlands: a review. Wetlands 33: 1–15.

    Article  Google Scholar 

  • Batzer, D. P. & A. Ruhí, 2013. Is there a core set of organisms that structure macroinvertebrate assemblages in freshwater wetlands? Freshwater Biology 58: 1647–1659.

    Article  Google Scholar 

  • Bayley, S. E., A. S. Wong & J. E. Thompson, 2012. Effects of agricultural encroachment and drought on wetlands and shallow lakes in the boreal transition zone of Canada. Wetlands 33: 17–28.

    Article  Google Scholar 

  • Beck, M. L., W. A. Hopkins & B. P. Jackson, 2013. Spatial and temporal variation in the diet of tree swallows: implications for trace-element exposure after habitat remediation. Archives of Environmental Contamination and Toxicology 65: 575–587.

    Article  CAS  PubMed  Google Scholar 

  • Bond, A. L. & K. A. Hobson, 2012. Reporting stable-isotope ratios in ecology: recommended terminology, guidelines and best practices. Waterbirds 35: 324–331.

    Article  Google Scholar 

  • Cobbaert, D., S. E. Bayley & J.-L. Greter, 2010. Effects of a top invertebrate predator (Dytiscus alaskanus; Coleoptera: Dytiscidae) on fishless pond ecosystems. Hydrobiologia 644: 103–114.

    Article  CAS  Google Scholar 

  • Corcoran, R. M., J. R. Lovvorn & P. J. Heglund, 2009. Long-term change in limnology and invertebrates in Alaskan boreal wetlands. Hydrobiologia 620: 77–89.

    Article  CAS  Google Scholar 

  • Cremona, F., D. Planas & M. Lucotte, 2010. Influence of functional feeding groups and spatiotemporal variables on the δ 15N signature of littoral macroinvertebrates. Hydrobiologia 647: 51–61.

    Article  CAS  Google Scholar 

  • Dawson, R. D. & R. G. Clark, 2000. Effects of hatching date and egg size on growth, recruitment, and adult size of lesser scaup. Condor 102: 930–935.

    Article  Google Scholar 

  • Dessborn, L., J. Elmberg & G. Englund, 2011. Pike predation affects breeding success and habitat selection of ducks. Freshwater Biology 56: 579–589.

    Article  Google Scholar 

  • Epners, C., S. Bayley, J. Thompson & W. Tonn, 2010. Influence of fish assemblage and shallow lake productivity on waterfowl communities in the Boreal Transition Zone of western Canada. Freshwater Biology 55: 2265–2280.

    Google Scholar 

  • Fast, P. L. F., R. G. Clark, R. W. Brook & J. E. Hines, 2004. Patterns of wetland use by brood-rearing lesser scaup in northern boreal forest of Canada. Waterbirds 27: 177–182.

    Article  Google Scholar 

  • Feuchtmayr, H., D. McKee, I. F. Harvey, D. Atkinson & B. Moss, 2007. Response of macroinvertebrates to warming, nutrient addition and predation in large-scale mesocosm tanks. Hydrobiologia 584: 425–432.

    Article  CAS  Google Scholar 

  • Florencio, M., C. Gómez-Rodríguez, L. Serrano & C. Díaz-Paniagua, 2013. Competitive exclusion and habitat segregation in seasonal macroinvertebrate assemblages in temporary ponds. Freshwater Science 32: 650–662.

    Article  Google Scholar 

  • Foxi, C. & G. Delrio, 2010. Larval habitats and seasonal abundance of Culicoides biting midges found in association with sheep in northern Sardinia, Italy. Medical and Veterinary Entomology 24: 199–209.

    Article  CAS  PubMed  Google Scholar 

  • Gardner, J. L., A. Peters, M. R. Kearney, L. Joseph & R. Heinsohn, 2011. Declining body size: a third universal response to warming? Trends in Ecology & Evolution 26: 285–291.

    Article  Google Scholar 

  • Gollop, J. B. & W. H. Marshall, 1954. A guide for aging duck broods in the field. US Department of the Interior, Bureau of Sport Fisheries and Wildlife.

  • Gurney, K. E. B., R. G. Clark & S. M. Slattery, 2012. Seasonal variation in pre-fledging survival of lesser scaup Aythya affinis: hatch date effects depend on maternal body mass. Journal of Avian Biology 43: 68–78.

    Article  Google Scholar 

  • Halupka, L., A. Dyrcz & M. Borowiec, 2008. Climate change affects breeding of reed warblers Acrocephalus scirpaceus. Journal of Avian Biology 39: 95–100.

    Article  Google Scholar 

  • Hanson, M. A., S. E. Bowe, F. G. Ossman, J. Fieberg, M. G. Butler & R. Koch, 2009. Influences of forest harvest and environmental gradients on aquatic invertebrate communities of seasonal ponds. Wetlands 29: 884–895.

    Article  Google Scholar 

  • Hardin, J. W. & J. M. Hilbe, 2003. Generalized Estimating Equations, 1st ed. Chapman & Hall/CRC, Washington, DC.

    Google Scholar 

  • Hayden, B., C. Harrod, E. Sonninen & K. K. Kahilainen, 2015. Seasonal depletion of resources intensifies trophic interactions in subarctic freshwater fish communities. Freshwater Biology 60: 1000–1015.

    Article  Google Scholar 

  • Hobson, K. A., M. B. Wunder, S. L. Van Wilgenburg, R. G. Clark & L. I. Wassenaar, 2009. A method for investigating population declines of migratory birds using stable isotopes: origins of harvested lesser scaup in North America. PLoS One 4: e7915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornung, J. P. & A. L. Foote, 2006. Aquatic invertebrate responses to fish presence and vegetation complexity in western boreal wetlands, with implications for waterbird productivity. Wetlands 26: 1–12.

    Article  Google Scholar 

  • Horváth, Z., M. Ferenczi, A. Móra, C. F. Vad, A. Ambrus, L. Forró, G. Szövényi & S. Andrikovics, 2012. Invertebrate food sources for waterbirds provided by the reconstructed wetland of Nyirkai-Hany, northwestern Hungary. Hydrobiologia 697: 59–72.

    Article  CAS  Google Scholar 

  • Iverson, S. J., 2009. Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In Arts, M. T., M. J. Kainz & M. T. Brett (eds), Lipids in Aquatic Ecosystems. Springer, New York: 281–308.

    Chapter  Google Scholar 

  • Kelly, H. A. W., E. J. Rosi-Marshall, T. A. Kennedy, J. Robert, O. Hall, W. F. Cross & C. V. Baxter, 2013. Macroinvertebrate diets reflect tributary inputs and turbidity-driven changes in food availability in the Colorado River downstream of Glen Canyon Dam. Freshwater Science 32: 397–410.

    Article  Google Scholar 

  • Knorp, N. E. & N. J. Dorn, 2014. Dissimilar numerical responses of macroinvertebrates to disturbance from drying and predatory sunfish. Freshwater Biology 59: 1378–1388.

    Article  Google Scholar 

  • Koper, N. & M. Manseau, 2009. Generalized estimating equations and generalized linear mixed-effects models for modelling resource selection. Journal of Applied Ecology 46: 590–599.

    Article  Google Scholar 

  • Lemelin, L.-V., M. Darveau, L. Imbeau & D. Bordage, 2010. Wetland use and selection by breeding waterbirds in the boreal forest of Quebec, Canada. Wetlands 30: 321–332.

    Article  Google Scholar 

  • Lewis, T. L., D. Esler & W. S. Boyd, 2008. Foraging behavior of Surf Scoters (Melanitta perspicillata) and White-winged Scoters (M-fusca) in relation to clam density: inferring food availability and habitat quality. Auk 125: 149–157.

    Article  Google Scholar 

  • Lewis, T. L., M. S. Lindberg, J. A. Schmutz, P. J. Heglund, J. Rover, J. C. Koch & M. R. Bertram, 2014. Pronounced chemical response of Subarctic lakes to climate-driven losses in surface area. Global Change Biology 21: 1140–1152.

    Article  PubMed  Google Scholar 

  • Lewis, T. L., M. S. Lindberg, J. A. Schmutz, M. R. Bertram & A. J. Dubour, 2015. Species richness and distributions of boreal waterbird broods in relation to nesting and brood-rearing habitats. The Journal of Wildlife Management 79: 296–310.

    Article  Google Scholar 

  • Longcore, J. R., D. G. McAuley, G. W. Pendelton, C. R. Bennatti, T. M. Mingo & K. L. Stromborg, 2006. Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine. Hydrobiologia 567: 143–167.

    Article  CAS  Google Scholar 

  • Lourenço, P. M., F. S. Mandema, J. C. E. W. Hooijmeijer, J. P. Granadeiro & T. Piersma, 2010. Site selection and resource depletion in black-tailed godwits Limosa l. limosa eating rice during northward migration. Journal of Animal Ecology 79: 522–528.

    Article  PubMed  Google Scholar 

  • Menon, P. S., 1969. Population ecology of Gammarus-lacustris in Big Island Lake Canada. I. Habitat preference and relative abundance. Hydrobiologia 33: 14–32.

    Article  Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America, 4th ed. Kendall Hunt Publishing, Dubuque, IA.

    Google Scholar 

  • Miller, A. T., M. A. Hanson, J. O. Church, B. Palik, S. E. Bowe & M. G. Butler, 2008. Invertebrate community variation in seasonal forest wetlands: implications for sampling and analyses. Wetlands 28: 874–881.

    Article  Google Scholar 

  • Mitsch, W. & M. Hernandez, 2013. Landscape and climate change threats to wetlands of North and Central America. Aquatic Sciences 75: 133–149.

    Article  CAS  Google Scholar 

  • Murkin, H. R., J. A. Kadlec & E. J. Murkin, 1991. Effects of prolonged flooding on nektonic invertebrates in small diked marshes. Canadian Journal of Fisheries and Aquatic Sciences 48: 2355–2364.

    Article  Google Scholar 

  • Murkin, H. R. & L. Ross, 1999. Macroinvertebrate responses to a simulated wet/dry cycle. In Batzer, D. P., R. B. Rader & S. A. Wissinger (eds), Invertebrates in Freshwater Wetlands of North America: Ecology and Management. John Wiley & Sons, New York, New York: 543–569.

    Google Scholar 

  • Nummi, P., A. Paasivaara, S. Suhonen & H. Pöysä, 2013. Wetland use by brood-rearing female ducks in a boreal forest landscape: the importance of food and habitat. Ibis 155: 68–79.

    Article  Google Scholar 

  • Panov, V. E. & D. J. McQueen, 1998. Effects of temperature on individual growth rate and body size of a freshwater amphipod. Canadian Journal of Zoology 76: 1107–1116.

    Article  Google Scholar 

  • Pehrsson, O. & K. G. K. Nystrom, 1988. Growth and movements of oldsquaw ducklings in relation to food. Journal of Wildlife Management 52: 185–191.

    Article  Google Scholar 

  • Phillips, D. L. & P. M. Eldridge, 2005. Estimating the timing of diet shifts using stable isotopes. Oecologia 147: 195–203.

    Article  PubMed  Google Scholar 

  • Phillips, D. L., R. Inger, S. Bearhop, A. L. Jackson, J. W. Moore, A. C. Parnell, B. X. Semmens & E. J. Ward, 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92: 823–835.

    Article  Google Scholar 

  • Pöyry, J., R. Leinonen, G. Söderman, M. Nieminen, R. K. Heikkinen & T. R. Carter, 2011. Climate-induced increase of moth multivoltinism in boreal regions. Global Ecology and Biogeography 20: 289–298.

    Article  Google Scholar 

  • Pöysä, H., J. Elmberg, K. Sjöberg & P. Nummi, 2000. Nesting mallards (Anas platyrhynchos) forecast brood-stage food limitation when selecting habitat: experimental evidence. Oecologia 122: 582–586.

    Google Scholar 

  • Rautio, M., I. Bayly, J. Gibson & M. Nyman, 2008. Zooplankton and zoobenthos in high-latitude water bodies. High Latitude Lake and River Ecosystems Oxford University Press, Oxford: 231–247.

    Google Scholar 

  • Rautio, M., F. Dufresne, I. Laurion, S. Bonilla, W. F. Vincent & K. S. Christoffersen, 2011. Shallow freshwater ecosystems of the circumpolar Arctic. Ecoscience 18: 204–222.

    Article  Google Scholar 

  • Robbins, C. T., J. K. Fortin, K. D. Rode, S. D. Farley, L. A. Shipley & L. A. Felicetti, 2007. Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116: 1675–1682.

    Article  Google Scholar 

  • Ross, B., M. B. Hooten, J.-M. DeVink & D. N. Koons, 2015. Combined effects of climate, predation, and density dependence on Greater and Lesser Scaup population dynamics. Ecological Applications 25: 1606–1617.

    Article  PubMed  Google Scholar 

  • Sass, G. Z., I. F. Creed, S. E. Bayley & K. J. Devito, 2007. Understanding variation in trophic status of lakes on the Boreal Plain: a 20 year retrospective using Landsat TM imagery. Remote Sensing of Environment 109: 127–141.

    Article  Google Scholar 

  • Schekkerman, H., I. Tulp, T. Piersma & G. H. Visser, 2003. Mechanisms promoting higher growth rate in arctic than in temperate shorebirds. Oecologia 134: 332–342.

    Article  PubMed  Google Scholar 

  • Schindler, D. W. & P. G. Lee, 2010. Comprehensive conservation planning to protect biodiversity and ecosystem services in Canadian boreal regions under a warming climate and increasing exploitation. Biological Conservation 143: 1571–1586.

    Article  Google Scholar 

  • Scrimgeour, G. J., W. M. Tonn, C. A. Paszkowski & C. Goater, 2001. Benthic macroinvertebrate biomass and wildfires: evidence for enrichment of boreal subarctic lakes. Freshwater Biology 46: 367–378.

    Article  CAS  Google Scholar 

  • Slattery, S. M., J. L. Morissette, G. G. Mack & E. W. Butterworth, 2011. Waterfowl conservation planning: science needs and approaches. In J. V. Wells (ed), Boreal Birds of North America: A Hemispheric View of Their Conservation Links and Significance. Studies in Avian Biology 41. University of California Press, Berkeley, CA: 23–40.

  • Smerdon, B. D., K. J. Devito & C. A. Mendoza, 2005. Interaction of groundwater and shallow lakes on outwash sediments in the sub-humid Boreal Plains of Canada. Journal of Hydrology 314: 246–262.

    Article  Google Scholar 

  • Spiegelhalter, D. J., N. G. Best, B. P. Carlin & A. Linde, 2014. The deviance information criterion: 12 years on. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76: 485–493.

    Article  Google Scholar 

  • Stock, B. C. & B. X. Semmens, 2013. MixSIAR GUI User Manual, version 1.0.

  • Strand, K. A., S. R. Chipps, S. N. Kahara, K. F. Higgins & S. Vaa, 2008. Patterns of prey use by lesser scaup Aythya affinis (Aves) and diet overlap with fishes during spring migration. Hydrobiologia 598: 389–398.

    Article  Google Scholar 

  • Strode, P. K., 2009. Spring tree species use by migrating Yellow-rumped warblers in relation to phenology and food availability. The Wilson Journal of Ornithology 121: 457–468.

    Article  Google Scholar 

  • Stroup, W. W., 2012. Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press, Boca Raton.

    Google Scholar 

  • Stroup, W. W., 2015. Rethinking the analysis of non-normal data in plant and soil science. Agronomy Journal 107: 811–827.

    Article  Google Scholar 

  • Sugden, L. G., 1973. Feeding ecology of pintail, gadwall, American wigeon and lesser scaup ducklings in southern Alberta Canadian Wildlife Service Report Series. Winnipeg, MB: 1–45.

  • Thorp, J. H. & A. P. Covich, 2001. Ecology and classification of North American freshwater invertebrates, 2nd ed. Academic Press, San Diego, California.

    Google Scholar 

  • Valentini, A., F. Pompanon & P. Taberlet, 2009. DNA barcoding for ecologists. Trends in Ecology & Evolution 24: 110–117.

    Article  Google Scholar 

  • Varo, N., A. J. Green, M. I. Sánchez, C. Ramo, J. Gómez & J. A. Amat, 2011. Behavioural and population responses to changing availability of Artemia prey by moulting black-necked grebes, Podiceps nigricollis. Hydrobiologia 664: 163–171.

    Article  Google Scholar 

  • Walsh, K. A., D. R. Halliwell, J. E. Hines, M. A. Fournier, A. Czarnecki & M. F. Dahl, 2006. Effects of water quality on habitat use by lesser scaup (Aythya affinis) broods in the boreal Northwest Territories, Canada. Hydrobiologia 567: 101–111.

    Article  CAS  Google Scholar 

  • Ward, E. J., B. X. Semmens, D. L. Phillips, J. W. Moore & N. Bouwes, 2011. A quantitative approach to combine sources in stable isotope mixing models. Ecosphere 2: art19.

    Article  Google Scholar 

  • Warton, D. I., 2005. Many zeros does not mean zero inflation: comparing the goodness-of-fit of parametric models to multivariate abundance data. Environmetrics 16: 275–289.

    Article  Google Scholar 

  • Webster, K. L., F. D. Beall, I. Creed & D. Kreutzweiser, 2015. Impacts and prognosis of natural resource development on water and wetlands in Canada’s boreal zone. Environmental Reviews 23: 53.

    Article  Google Scholar 

  • Wells, J. V., D. Roberts, R. Cheng, P. Lee & D. M., 2011. A forest of blue - Canada’s boreal forest: the world’s waterkeeper. International Boreal Conservation Campaign and Canadian Boreal Initiative, Seattle, WA, and Ottawa, ON.

  • Wiken, E. B., D. Gauthier, I. K. Marshall, K. Lawton & H. Hirvonen, 1996. A perspective on Canada’s ecosystems: an overview of the terrestrial and marine ecozones Occasional paper. Ottawa.

  • Zoltai, S. C., 1988. Wetland environments and classification. In Rubec, C. D. A. (ed.), Wetlands of Canada. Polyscience, Montreal, Quebec: 1–26.

    Google Scholar 

Download references

Acknowledgments

We thank numerous individuals (notably Karen Petkau, Olivier Mongeon, Melanie Wilson, Wally Price, and Steve Leach) for help in the field, as well as the Gwich’in Renewable Resource Board (funding and logistical support), Gwich’in Tribal Council (land access), and the Gwichya Gwich’in Renewable Resource Council (Tsiigehtchic Renewable Resource Council) for permission to work on their land. Studies were conducted under licences from the Canadian Wildlife Service (Permit NWT-SCI-04-04) and the University of Saskatchewan Animal Care and Use Committee (Permit 20050038). We are also grateful to Hollie Remenda for tireless work in the lab. Funding was provided by Ducks Unlimited Canada (DUC) and Environment Canada, personal support for K. Gurney was through a Natural Sciences and Engineering Research Council (NSERC) Discovery Grant (to RGC), NSERC Industrial Postgraduate Scholarship in conjunction with DUC, University of Saskatchewan Graduate Fellowship, MBNA Canada Bank Conservation Fellowship (DUC), Northern Scientific Training Program (Aboriginal Affairs and Northern Development Canada) and Dennis Raveling Scholarship for Waterfowl Research, California Waterfowl Association. Finally, we thank Mark Miller and an anonymous reviewer for constructive review comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. B. Gurney.

Additional information

Handling editor: M. Power

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurney, K.E.B., Clark, R.G., Slattery, S.M. et al. Connecting the trophic dots: responses of an aquatic bird species to variable abundance of macroinvertebrates in northern boreal wetlands. Hydrobiologia 785, 1–17 (2017). https://doi.org/10.1007/s10750-016-2817-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2817-4

Keywords

Navigation