Skip to main content
Log in

Do bio-physical attributes of steps and pools differ in high-gradient mountain streams?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The hydrologic and physical structure of streams strongly influences the biological composition of benthic macroinvertebrate communities. Research on step–pool systems in high-gradient streams has focused primarily on physical processes rather than on ecological characteristics. This study examined both the biological and physical attributes of 27 step–pool sequences in three steep mountain streams of the Smith River Basin in northern California, USA. Multivariate analysis using non-metric multidimensional scaling (NMS) found a biological separation of step and pool sites (based on benthic macroinvertebrate data) in all three study watersheds. Step habitats had greater taxa richness, diversity, %Plecoptera, %Heptageniidae, %Nemouridae, and %clingers compared to pools. Steps also differed from pools in physical characteristics such as grain size distribution, whereby steps were dominated by boulders compared to pools characterized by gravel and cobbles. Moreover, steps had higher dissolved oxygen, greater water velocity, and shallower water depths compared to pools. NMS ordinations showed a correlation between physical factors and biological communities. These results suggest the ecological importance of step–pools streams, in that the development of step sequences creates and maintains a repetitive pattern of high-quality ecological environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahams, A. D., G. Li & J. F. Atkinson, 1995. Step–pool streams: adjustment to maximum flow resistance. Water Resources Research 31: 2593–2602.

    Article  Google Scholar 

  • Anderson, N. H., 1976. The distribution and biology of the Oregon Trichoptera. Oregon Agricultural Experiment Station Technical Bulletin 134: 1–152.

    Google Scholar 

  • Anderson, N. H., J. R. Sedell, L. M. Roberts & F. J. Triska, 1978. The role of aquatic invertebrates in processing wood debris in coniferous forest streams. American Midland Naturalist 100: 64–82.

    Article  CAS  Google Scholar 

  • Anderson, N. H., R. J. Steedman & T. Dudley, 1984. Patterns of exploitation by stream invertebrates of wood debris. Verhandlungen des Internationalen Verein Limnologie 22: 1847–1852.

    Google Scholar 

  • Barbour, M. T., J. Gerritsen, B. Snyder & S. James, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

    Google Scholar 

  • Bêche, L. A., E. P. McElravy & V. H. Resh, 2006. Long-term seasonal variation in the biological traits of benthic macroinvertebrates in two Mediterranean-climate streams in California, USA. Freshwater Biology 51: 56–75.

    Article  Google Scholar 

  • Becker, G., 1990. Comparison of the dietary composition of epilithic trichopteran species in a first order stream. Archiv für Hydrobiologie 120: 13–40.

    Google Scholar 

  • Benke, A. C. & J. B. Wallace, 1980. Trophic basis of production among net-spinning caddis flies in a southern Appalachian stream. Ecology 61: 108–118.

    Article  Google Scholar 

  • Bonada, N., M. Rieradevall & N. Prat, 2007. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589: 91–106.

    Article  Google Scholar 

  • Bowman, S. W., 2012. Patrick Creek Watershed 2011 Level II Stream Survey. Report submitted to Six Rivers National Forest, Smith River National Recreation Area, Gasquet Ranger District, Gasquet.

  • Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities in southern Wisconsin. Ecological Monographs 27: 325–349.

    Article  Google Scholar 

  • Brown, A. V. & P. P. Brussock, 1991. Comparisons of benthic invertebrates between riffles and pools. Hydrobiologia 220: 99–108.

    Article  Google Scholar 

  • Bryant, M. D., T. Gomi & J. J. Piccolo, 2007. Structures linking physical and biological processes in headwater streams of the Maybeso watershed, Southeast Alaska. Forest Science 53: 371–383.

    Google Scholar 

  • Buffington, J. M., D. R. Montgomery & H. M. Greenberg, 2004. Basin-scale availability of salmonid spawning gravel as influenced by channel type and hydraulic roughness in mountain catchments. Canadian Journal of Fisheries and Aquatic Sciences 61: 2085–2096.

    Article  Google Scholar 

  • Burton, G. J. & T. M. McRae, 1972. Observations on trichopteran predators on aquatic stages of Simulium damnosum and other Simulium species in Ghana. Journal of Medical Entomology 9: 289–294.

    Article  CAS  PubMed  Google Scholar 

  • California Geological Survey Website. [available on internet at http://www.consrv.ca.gov/]. Accessed 14 October 2014.

  • Carter, J. L., V. H. Resh, M. J. Hannaford & M. J. Myers, 2007. Macroinvertebrates as biotic indicators of environmental quality. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic, San Diego: 805–831.

    Chapter  Google Scholar 

  • Chin, A., 1989. Step–pools in stream channels. Progress in Physical Geography 13: 391–408.

    Article  Google Scholar 

  • Chin, A., 1999. The morphologic structure of step–pool in mountain streams. Geomorphology 27: 191–204.

    Article  Google Scholar 

  • Chin, A., 2002. The periodic nature of step–pool mountain streams. American Journal of Science 302: 144–167.

    Article  Google Scholar 

  • Chin, A. & J. D. Phillips, 2007. The self-organization of step–pools in mountain streams. Geomorphology 83: 346–358.

    Article  Google Scholar 

  • Chin, A., A. H. Purcell, J. Quan & V. H. Resh, 2009a. Assessing geomorphological and ecological responses in restored step–pool systems. In James, L. A., S. L. Rathburn & G. R. Whittcar (eds), Management and Restoration of Fluvial Systems with Broad Historical Changes and Human Impacts: Geological Society of America Special Paper 451: 199–217.

  • Chin, A., S. Anderson, A. Collison, B. Ellis-Sugai, J. Haltiner, J. Hogervorst, G. M. Kondolf, L. S. O’Hirok, A. H. Purcell, A. L. Riley & E. Wohl, 2009b. Linking theory and practice for restoration of step–pool streams. Environmental Management 43: 645–661.

    Article  PubMed  Google Scholar 

  • Chin, A., F. Gelwick, D. Laurencio, L. R. Laurencio, M. S. Byers & M. Scoggins, 2010. Linking geomorphological and ecological responses in restored urban pool–riffle streams. Ecological Restoration 28: 460–475.

    Article  Google Scholar 

  • Collier, K. J., 1994. Influence of nymphal size, sex and morphotype on microdistribution of Deleatidium (Ephemeroptera: Leptophlebiidae) in a New Zealand river. Freshwater Biology 31: 35–42.

    Article  Google Scholar 

  • Comiti, F., L. Mao, M. A. Lenzi & M. Siligardi, 2009. Artificial steps to stabilize mountain rivers: a post-project ecological assessment. River Research and Applications 25: 639–659.

    Article  Google Scholar 

  • Connolly, N. M., M. R. Crossland & R. G. Pearson, 2004. Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates. Journal of the North American Benthological Society 23: 251–270.

    Article  Google Scholar 

  • Dolédec, S., N. Lamouroux, U. Fuchs & S. Mérigoux, 2007. Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams. Freshwater Biology 52: 145–164.

    Article  Google Scholar 

  • Dudley, T. L. & C. M. D’Antonio, 1991. The effects of substrate texture, grazing and disturbances on macroalgae establishment in streams. Ecology 72: 297–309.

    Article  Google Scholar 

  • Dudley, T. L., S. D. Cooper & N. Hemphill, 1986. Effects of macroalgae on a stream invertebrate community. Journal of the North American Benthological Society 5: 93–106.

    Article  Google Scholar 

  • Dupuis, I. A., F. L. Bunnel & P. A. Friele, 2000. Determinants of the tailed frog’s range in British Columbia, Canada. Northwest Science 74: 109–115.

    Google Scholar 

  • Edington, J. M., 1968. Habitat preferences in net-spinning caddis larvae with special reference to the influence of water velocity. Journal of Animal Ecology 37: 675–692.

    Article  Google Scholar 

  • Fuller, R. L. & R. J. Mackay, 1980. Field and laboratory studies of net-spinning activity by Hydropsyche larvae (Trichoptera: Hydropsychidae). Canadian Journal of Zoology 58: 2006–2014.

    Article  Google Scholar 

  • Gilpin, B. R. & M. A. Brusven, 1970. Food habits and ecology mayflies of the St. Mary’s River in Idaho. Melanderia 4: 19–40.

    Google Scholar 

  • Gomi, T., R. C. Sidle & J. S. Richardson, 2002. Understanding processes and downstream linkages of headwater systems. Bioscience 52: 905–916.

    Article  Google Scholar 

  • Gore, J. A., J. B. Layzer & J. Mead, 2001. Macroinvertebrate instream flow studies after 20 years: a role in stream management and restoration. Regulated Rivers: Research and Management 17: 527–542.

    Article  Google Scholar 

  • Hall, R. O., E. S. Bernhardt & G. E. Likens, 2002. Relating nutrient uptake with transient storage in forested mountain streams. Limnology and Oceanography 47: 255–265.

    Article  CAS  Google Scholar 

  • Hansen, R. A., D. D. Hart & R. A. Merz, 1991. Flow mediates predator–prey interactions between triclad flatworms and larval black flies. Oikos 60: 187–196.

    Article  Google Scholar 

  • Hart, D. D. & C. M. Finelli, 1999. Physical–biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Reviews of Ecology and Systematics 30: 363–395.

    Article  Google Scholar 

  • Heede, B. H., 1981. Dynamics of selected mountain streams in the western United States of America. Zeitschrift fur Geomorphologie 25: 17–32.

    Google Scholar 

  • Hoffmann, A. & V. H. Resh, 2003. Oviposition in three species of limnephiloid caddisflies (Trichoptera): hierarchical influences on site selection. Freshwater Biology 48: 1064–1077.

    Article  Google Scholar 

  • Holomuzki, J. R., P. C. Furey, R. L. Lowe & M. E. Power, 2013. Microdistributional variability of larval caddisflies in Mediterranean-climate streams in northern California. Western North American Naturalist 73: 261–269.

    Article  Google Scholar 

  • Hora, S. L., 1930. Ecology, bionomics, and evolution of the torrential fauna, with special reference to the organs of attachment. Philosophical Transactions of the Royal Society, Series B 218: 171–282.

    Article  Google Scholar 

  • Hynes, H. B. N., 1970. The Ecology of Running Waters. University of Toronto Press, Toronto.

    Google Scholar 

  • Jacobsen, D., 2008. Low oxygen pressure as a driving factor for the altitudinal decline in taxon richness of stream macroinvertebrates. Oecologia 154: 795–807.

    Article  PubMed  Google Scholar 

  • Judd, H. E., 1964. A study of bed characteristics in relation to flow in rough, high-gradient natural channels. Unpublished PhD Thesis, Utah State University, Logan.

  • Karlsson, O. M., J. S. Richardson & P. M. Kiffney, 2005. Modelling organic matter dynamics in headwater streams of south-western British Columbia, Canada. Ecological Modelling 183: 463–476.

    Article  Google Scholar 

  • Katano, I., H. Mitsuhashi, Y. Isobe, H. Sato & T. Oishi, 2005. Reach-scale distribution dynamics of a grazing stream insect, Micrasema quadriloba Martynov (Brachycentridae, Trichoptera), in relation to current velocity and periphyton abundance. Zoological Science 22: 853–860.

    Article  PubMed  Google Scholar 

  • Katano, I., H. Doi, A. Houki, Y. Isobe & T. Oishi, 2007. Changes in periphyton abundance and community structure with the dispersal of a caddisfly grazer, Micrasema quadriloba. Limnology 8: 219–226.

    Article  Google Scholar 

  • Lancaster, J. & A. G. Hildrew, 1993. Flow refugia and the microdistribution of lotic macroinvertebrates. Journal of the North American Benthological Society 12: 385–393.

    Article  Google Scholar 

  • Lloyd, J. T., 1921. The biology of North America caddis fly larvae. Bulletin of the Lloyd Library 21: 1–124.

    Google Scholar 

  • Lytle, D. A. & N. L. Poff, 2004. Adaptation to natural flow regime. TREE 19: 94–100.

    PubMed  Google Scholar 

  • Manuel, K. L. & T. C. Folsom, 1982. Instar sizes, life cycles, and food habits of five Rhyacophila (Trichoptera: Rhyacophilidae) species from the Appalachian Mountains of South Carolina, U.S.A. Hydrobiologia 97: 281–285.

    Article  Google Scholar 

  • McCune, B. & J. B. Grace, 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach.

    Google Scholar 

  • Mérigoux, S. & S. Dolédec, 2004. Hydraulic requirements of stream communities: a case study on invertebrates. Freshwater Biology 49: 600–613.

    Article  Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg (eds), 2008. An Introduction to the Aquatic Insects of North America. Kendall-Hunt, Dubuque.

    Google Scholar 

  • Mielke, P. W. & K. L. Berry, 2001. Permutation Methods: A Distance Function Approach. Springer Series in Statistics, Berlin.

  • Montgomery, D. R. & J. M. Buffington, 1997. Channel-reach morphology in mountain drainage basins. GSA Bulletin 109: 596–611.

    Article  Google Scholar 

  • Montgomery, D. R., E. M. Beamer, G. R. Pess & T. P. Quinn, 1999. Channel type and salmonid spawning distribution and abundance. Canadian Journal of Fisheries and Aquatic Sciences 56: 377–387.

    Article  Google Scholar 

  • Muehlbauer, J. D. & M. W. Doyle, 2012. Knickpoint effects on macroinvertebrates, sediment, and discharge in urban and forested streams: urbanization outweighs microscale habitat heterogeneity. Freshwater Science 31: 282–295.

    Article  Google Scholar 

  • Palmer, T. M., 1995. The influence of spatial heterogeneity on the behavior and growth of two herbivorous stream insects. Oecologia 104: 476–486.

    Article  Google Scholar 

  • Patterson, J. W. & R. L. Vannote, 1979. Life history and population dynamics of Heteroplectron americanum. Environmental Entomology 8: 665–669.

    Article  Google Scholar 

  • Peck, J. E., 2010. Multivariate Analysis for Community Ecologists: Step-by-Step Using PC-ORD. MjM Software Design, Gleneden Beach, 162 pp.

  • Poepperl, R., 2000. The filter feeders Hydropsyche angustipennis and H. pellucidula (Trichoptera: Hydropsychidae) in a Northern German lowland stream: microdistribution, larval development, emergence pattern, and secondary production. Limnologica: Ecology and Management of Inland Waters 30: 65–72.

    Article  Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Principe, R. E., G. B. Raffaini, C. M. Gualdoni, A. M. Oberto & M. C. Corigliano, 2007. Do hydraulic units define macroinvertebrate assemblages in mountain streams of central Argentina? Limnologica: Ecology and Management of Inland Waters 37: 323–336.

    Article  CAS  Google Scholar 

  • Purcell, A. H., C. Friedrich & V. H. Resh, 2002. An assessment of a small urban stream restoration project in northern California. Restoration Ecology 10: 685–694.

    Article  Google Scholar 

  • Sagnes, P., S. Mérigoux & N. Péru, 2008. Hydraulic habitat use with respect to body size of aquatic insect larvae: case of six species from a French Mediterranean type stream. Limnologica: Ecology and Management of Inland Waters 38: 23–33.

    Article  Google Scholar 

  • Scheuerlein, H., 1999. Morphological dynamics of step–pool systems in mountain streams and their importance for riparian ecosystems. In Jayawardena, A. W., J. M. Lee & Z. Y. Wang (eds), River Sedimentation: Theory and Applications. Balkema, Rotterdam: 205–210.

    Google Scholar 

  • Smith, S. D., 1968. The Rhyacophila of the Salmon River drainage of Idaho with special reference to larvae. Annals of the Entomological Society of America 61: 655–674.

    Article  Google Scholar 

  • Smith, J. A. & A. J. Dartnall, 1980. Boundary layer control by water pennies (Coleoptera Psephenidae). Aquatic Insects 2: 65–72.

    Article  Google Scholar 

  • Statzner, B., 1981. The relation between “hydraulic stress” and microdistribution of benthic macroinvertebrates in a lowland running water system, the Schierenseebrooks (North Germany). Archiv für Hydrobiologie 91: 192–218.

    Google Scholar 

  • Statzner, B., 1988. Growth and Reynolds number of lotic macroinvertebrates: a problem for adaptation of shape to drag. Oikos 51: 84–87.

    Article  Google Scholar 

  • Statzner, B. & D. Borchardt, 1994. Longitudinal patterns and processes along streams: modelling ecological responses to physical gradients. In Giller, P. S., A. G. Hildrew & D. G. Raffaelli (eds), Aquatic Ecology: Scale, Pattern and Process. Blackwell Scientific Publications, Oxford: 113–140.

    Google Scholar 

  • Statzner, B. & B. Higler, 1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshwater Biology 16: 127–139.

    Article  Google Scholar 

  • Statzner, B., N. Bonada & S. Dolédec, 2008. Predicting the abundance of European stream macroinvertebrates using biological attributes. Oecologia 156: 65–73.

    Article  PubMed  Google Scholar 

  • Tullos, D. D., D. L. Penrose, G. D. Jennings & W. G. Cope, 2009. Analysis of functional traits in reconfigured channels: implications for the bioassessment and disturbance of river restoration. Journal of the North American Benthological Society 28: 80–92.

    Article  Google Scholar 

  • United States Department of Agriculture (USDA) Web Soil Survey [available on internet at http://websoilsurvey.sc.egov.usda.gov/]. Accessed 2 December 2014.

  • Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biomonitoring through biological traits of benthic macroinvertebrates: how to use species trait databases? Hydrobiologia 422: 153–162.

    Article  Google Scholar 

  • Vogel, S., 1994. Life in Moving Fluids: The Physical Biology of Flow, 2nd ed. Princeton University Press, Princeton.

    Google Scholar 

  • Vogel, R. M. & C. N. Kroll, 1992. Regional geohydrologic–geomorphic relationships for the estimation of low-flow statistics. Water Resources Research 28: 2451–2458.

    Article  Google Scholar 

  • Wang, Z., C. Melching, X. Duan & G. Yu, 2009. Ecological and hydraulic studies of step–pool systems. Journal of Hydraulic Engineering 135: 705–717.

    Article  Google Scholar 

  • Weissenberger, J., H. Spatz, A. Emanns & J. Schwoerbel, 1991. Measurement of lift and drag forces in the m N range experienced by benthic arthropods at flow velocities below 1.2 m s−1. Freshwater Biology 25: 21–31.

    Article  Google Scholar 

  • Welsh, H. H. & L. M. Ollivier, 1998. Stream amphibians as indicators of ecosystem stress: a case study from California’s redwoods. Ecological Applications 8: 1118–1132.

    Google Scholar 

  • Wichard, W., W. Arens & G. Eisenbeis, 2002. Biological Atlas of Aquatic Insects. Apollo Books, Stenstrup.

    Google Scholar 

  • Wohl, E. E., S. Madsen & L. MacDonalds, 1997. Characteristics of log and clast bed-steps in step–pool streams of northwester Montana, USA. Geomorphology 20: 1–10.

    Article  Google Scholar 

  • Wolman, M. G., 1954. A method of sampling coarse river-bed material. American Geophysical Union Transactions 35: 951–956.

    Article  Google Scholar 

  • Yu, G. A., Z. Y. Wang, K. Zhang, X. H. Duan & T. C. Chang, 2010. Restoration of an incised mountain stream using artificial step–pool system. Journal of Hydraulic Research 48: 178–187.

    Article  Google Scholar 

  • Zhang, Y., 1996. Life history of Hydatophylax intermedius (Trichoptera, Limnephilidae) in Hokkaido, northern Japan. Aquatic Insects 18: 223–231.

    Article  Google Scholar 

  • Zimmermann, A. E., 2013. Step–pool channel features. In Shroder, J. F. & E. Wohl (eds), Treatise on Geomorphology, V 9, Fluvial Geomorphology. Academic, San Diego: 346–363.

    Google Scholar 

Download references

Acknowledgments

We thank students Anibal Florez, Tobin Weatherson, Johnathan Baer, and Amanda Baca for assistance with field and laboratory work; Bob Wisseman, Aquatic Biology Associates, Inc., for identification of the benthic macroinvertebrates and metric calculation. We also thank Omar Abi-Chahine for graphic support and Kimberley Johnson, Tyrone Kelley, and Mike McCain (Six Rivers National Forest) for their assistance with the sampling permit and locating suitable field sites. Field research was conducted under US Forest Service Permit #GAS-34. The authors also thank Alexander Purcell, Patina Mendez, Raphael Mazor, and the three Reviewers whose advice helped improve this paper. This research was funded in part by the National Science Foundation Grant #1145469.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison P. O’Dowd.

Additional information

Handling Editor: Marcelo S. Moretti

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Dowd, A.P., Chin, A. Do bio-physical attributes of steps and pools differ in high-gradient mountain streams?. Hydrobiologia 776, 67–83 (2016). https://doi.org/10.1007/s10750-016-2735-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2735-5

Keywords

Navigation